Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Tradit Chin Med ; 44(3): 620-628, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38767647

RESUMEN

Genus Prunus comprising around 430 species is a vast important genus of family Rosaceae, subfamily amygdalaoidae. Among all 430 species, around 19 important species are commonly found in Indian sub-continent due to their broad nutritional and economic importance. Some most common species of genus Prunus are Prunus amygdalus, Prunus persica, Prunus armeniaca, Prunus avium, Prunus cerasus, Prunus cerasoides, Prunus domestica, Prunus mahaleb, etc. A newly introduced species of Prunus i.e Prunus sunhangii is recently discovered which is morphologically very similar to Prunus cerasoides. Plants of Prunus species are short to medium-sized deciduous trees mainly found in the northern hemisphere. In India and its subcontinent, it extends from the Himalayas to Sikkim, Meghalaya, Bhutan, Myanmar etc. Different Prunus species have been extensively studied for their morphological, microscopic, pharmacological and phytoconstituents characteristics. Total phenolic content of Prunus species explains the presence of phenols in high quantity and pharmacological activity due to phenols. Phytochemical screening of species of genus Prunus shows the presence of wide phytoconstituents which contributes in their pharmacological significance and reveals the therapeutic potential and traditional medicinal significance of this genus. Genus Prunus showed a potent antioxidant activity analyzed by 1,1-diphenyl-2-picryl-hydrazyl radical assay. Plant species belonging to the genus Prunus is widely used traditionally for the treatment of various disorders. Some specific Prunus species possess potent anticancer, anti-inflammatory, hypoglycemic etc. activity which makes the genus more interesting for further research and findings. This review is an attempt to summarize the comprehensive study of Prunus.


Asunto(s)
Fitoquímicos , Prunus , Humanos , Fitoquímicos/química , Fitoquímicos/farmacología , Prunus/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Farmacognosia , Asia Sudoriental , Animales
2.
Artículo en Inglés | MEDLINE | ID: mdl-37691193

RESUMEN

BACKGROUND: Cancer is a leading threat to humankind, accounting for nearly one million deaths in 2018, and the expected number of cancer-related deaths in 2040 is more than 16 million. The most common causes of cancer deaths are lung, colorectal, stomach, liver and breast cancer, while the highest number of new cancer cases belong to lung, breast, colorectal, prostate, stomach and liver cancer. INTRODUCTION: PARP-1 is an enzyme that plays an important role in DNA repair, cell propagation/survival and death due to its influence on numerous biological processes. Quinazolinones represent an important scaffold in medicinal chemistry and have a broad spectrum of biological activities. METHOD: In this study, we have synthesized quinazolinones by reaction of 2-aminobenzamide and substituted aldehydes. Molecular docking studies of synthesized compounds were performed for their PARP-1 binding affinities using Schrodinger 2016 software. In silico ADME studies were also performed for the synthesized compounds using the QikProp tool of Schrodinger software. RESULTS: Results of molecular docking studies indicated that synthesized quinazolinones had a good affinity towards active site of PARP-1 and compound 4 had the best docking score (-10.343). Results of ADME studies indicated the drug-like properties of synthesized compounds, which make them suitable drug candidates. CONCLUSION: All the synthesized compounds have a better docking score than niraparib (-9.05). Further, the synthesized compounds have a favorable ADME profile. Therefore, they may serve as important leads in discovering PARP-1 inhibitors.

3.
Chem Biodivers ; 20(4): e202300061, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36824028

RESUMEN

Metal complexes in cancer therapy have attracted much interest mainly because metals exhibit unique characteristics, such as redox activity, metal-ligand interaction, structure and bonding, Lewis acid properties etc. In 1965, Barnett Rosenberg serendipitously discovered the metal-based compound cisplatin, an outstanding breakthrough in the history of metal-based anticancer complexes and led to a new area of anticancer drug discovery. Many metal-based compounds have been studied for their potential anticancer properties. Some of these compounds have FDA approval for clinical use, while others are now undergoing clinical trials for cancer therapy and detection. In the present study, we have highlighted the primary mode of action of metallic complexes and all FDA-approved/under clinical trial drugs with reference to cancer treatment. This review also focuses on recent progress on metal-based complexes such as platinum, ruthenium, iron, etc. with potential anticancer activities.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Neoplasias , Rutenio , Humanos , Complejos de Coordinación/farmacología , Complejos de Coordinación/uso terapéutico , Complejos de Coordinación/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Neoplasias/tratamiento farmacológico , Cisplatino , Rutenio/química
4.
Curr Pharm Des ; 28(46): 3677-3705, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36345244

RESUMEN

Study Background & Objective: After the influenza pandemic (1918), COVID-19 was declared a Vth pandemic by the WHO in 2020. SARS-CoV-2 is an RNA-enveloped single-stranded virus. Based on the structure and life cycle, Protease (3CLpro), RdRp, ACE2, IL-6, and TMPRSS2 are the major targets for drug development against COVID-19. Pre-existing several drugs (FDA-approved) are used to inhibit the above targets in different diseases. In coronavirus treatment, these drugs are also in different clinical trial stages. Remdesivir (RdRp inhibitor) is the only FDA-approved medicine for coronavirus treatment. In the present study, by using the drug repurposing strategy, 70 preexisting clinical or under clinical trial molecules were used in scrutiny for RdRp inhibitor potent molecules in coronavirus treatment being surveyed via docking studies. Molecular simulation studies further confirmed the binding mechanism and stability of the most potent compounds. MATERIAL AND METHODS: Docking studies were performed using the Maestro 12.9 module of Schrodinger software over 70 molecules with RdRp as the target and remdesivir as the standard drug and further confirmed by simulation studies. RESULTS: The docking studies showed that many HIV protease inhibitors demonstrated remarkable binding interactions with the target RdRp. Protease inhibitors such as lopinavir and ritonavir are effective. Along with these, AT-527, ledipasvir, bicalutamide, and cobicistat showed improved docking scores. RMSD and RMSF were further analyzed for potent ledipasvir and ritonavir by simulation studies and were identified as potential candidates for corona disease. CONCLUSION: The drug repurposing approach provides a new avenue in COVID-19 treatment.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , ARN Polimerasa Dependiente del ARN , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Antivirales/química , Tratamiento Farmacológico de COVID-19/métodos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Ritonavir , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , SARS-CoV-2/metabolismo
5.
Opt Lett ; 47(15): 3720-3723, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35913298

RESUMEN

Fano resonance observed in various classical and quantum systems features an asymmetric spectral line shape. For designing nanoresonators for monochromatic applications, it is beneficial to describe Fano resonance in non-spectral parametric domains of critical structural parameters. We develop an analytical model of the parametric Fano profile based on a coupled harmonic oscillator model and theoretically demonstrate its application in describing the optical response of a series of waveguided plasmonic crystals of varying periodicity. The developed parametric Fano model may find applications in the design of monochromatic and spectrometer-free nanodevices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...