Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; : 1-19, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38450660

RESUMEN

Mycobacteria regulate the synthesis of mycolic acid through the fatty acid synthase system type 1 (FAS I) and the fatty acid synthase system type-2 (FAS-II). Because mammalian cells exclusively utilize the FAS-I enzyme system for fatty acid production, targeting the FAS-II enzyme system could serve as a specific approach for developing selective antimycobacterial drugs. Enoyl-acyl carrier protein reductase enzyme (MtInhA), part of the FAS-II enzyme system, contains the NADH cofactor in its active site and reduces the intermediate. Molecular docking studies were performed on an in-house database (∼2200 compounds). For this study, five different crystal structures of MtInhA (PDB Code: 4TZK, 4BQP, 4D0S, 4BGE, 4BII) were used due to rotamer difference, mutation and the presence of cofactors. Molecular dynamics simulations (250 ns) were performed for the novel 2-acylhydrazono-5-arylmethylene-4-thiazolidinones derivatives selected by molecular docking studies. Twenty-three compounds selected by in silico methods were synthesized. Antitubercular activity and MtInhA enzyme inhibition studies were performed for compounds whose structures were elucidated by IR,1H-NMR,13C-NMR, HSQC, HMBC, MS and elemental analysis.Communicated by Ramaswamy H. Sarma.

2.
Mol Divers ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38261121

RESUMEN

The development of anti-tuberculosis (anti-TB) drugs has become a challenging task in medicinal chemistry. This is because Mycobacterium tuberculosis (TB), the pathogen that causes tuberculosis, has an increasing number of drug-resistant strains, and existing medication therapies are not very effective. This resistance significantly demands new anti-TB drug profiles. Here, we present the design and synthesis of a number of hybrid compounds with previously known anti-mycobacterial moieties attached to quinoxaline, quinoline, tetrazole, and 1,2,4-oxadiazole scaffolds. A convenient ultrasound methodology was employed to attain spiroquinoxaline-1,2,4-oxadiazoles via [3 + 2] cycloaddition of quinoxaline Schiff bases and aryl nitrile oxides at room temperature. This approach avoids standard heating and column chromatography while producing high yields and shorter reaction times. The target compounds 3a-p were well-characterized, and their in vitro anti-mycobacterial activity (anti-TB) was evaluated. Among the screened compounds, 3i displayed promising activity against the Mycobacterium tuberculosis cell line H37Rv, with an MIC99 value of 0.78 µg/mL. However, three compounds (3f, 3h, and 3o) exhibited potent activity with MIC99 values of 6.25 µg/mL. To further understand the binding interactions, the synthesized compounds were docked against the tuberculosis protein 5OEQ using in silico molecular docking. Moreover, the most active compounds were additionally tested for their cytotoxicity against the RAW 264.7 cell line, and the cytotoxicity of compounds 3f, 3h, 3i, and 3o was 27.3, 28.9, 26.4, and 30.2 µg/mL, respectively. These results revealed that the compounds 3f, 3h, 3i, and 3o were less harmful to humans. Furthermore, the synthesized compounds were tested for ADME qualities, and the results suggest that this series is useful for producing innovative and potent anti-tubercular medicines in the future.

3.
ACS Med Chem Lett ; 14(12): 1754-1759, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38116435

RESUMEN

Serotogenic toxicity is a major hurdle associated with Linezolid in the treatment of drug-resistant tuberculosis (TB) due to the inhibition of monoamine oxidase (MAO) enzymes. Azole compounds demonstrate structural similarities to the recognized anti-TB drug Linezolid, making them intriguing candidates for repurposing. Therefore, we have repurposed azoles (Posaconazole, Itraconazole, Miconazole, and Clotrimazole) for the treatment of drug-resistant TB with the anticipation of their selectivity in sparing the MAO enzyme. The results of repurposing revealed that Clotrimazole showed equipotent activity against the Mycobacterium tuberculosis (Mtb) H37Rv strain compared to Linezolid, with a minimal inhibitory concentration (MIC) of 2.26 µM. Additionally, Clotrimazole exhibited reasonable MIC50 values of 0.17 µM, 1.72 µM, 1.53 µM, and 5.07 µM against the inhA promoter+, katG+, rpoB+, and MDR clinical Mtb isolates, respectively, compared to Linezolid. Clotrimazole also exhibited 3.90-fold less inhibition of MAO-A and 50.35-fold less inhibition of MAO-B compared to Linezolid, suggesting a reduced serotonergic toxicity burden.

4.
RSC Med Chem ; 14(12): 2714-2730, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38107181

RESUMEN

A new series inspired by combining fragments from nitazoxanide (NTZ) and 4-aminosalicylic acid (4-ASA) was synthesized and screened for in vitro antibacterial and antimycobacterial activities. The majority showed higher antibacterial potency than NTZ against all the screened strains, notably, 5f, 5j, 5n and 5o with MICs of 0.87-9.00 µM. Compounds 5c, 5n and 5o revealed higher potency than ciprofloxacin against K. pneumoniae, while 5i was equipotent. For E. faecalis, 3b, 5j, and 5k showed higher potency than ciprofloxacin. 5j was more potent against P. aeruginosa than ciprofloxacin, while 5n was more potent against S. aureus with an MIC of 0.87 µM. 5f showed equipotency to ciprofloxacin against H. pylori with an MIC of 1.74 µM. Compounds 3a and 3b (4-azidoNTZ, MIC 4.47 µM) are 2 and 5-fold more potent against Mycobacterium tuberculosis (Mtb H37Rv) than NTZ (MIC 20.23 µM) and safer. 4-Azidation and/or acetylation of NTZ improve both activities, while introducing 1,2,3-triazoles improves the antibacterial activity. Molecular docking studies within pyruvate ferredoxin oxidoreductase (PFOR), glucosamine-6-phosphate synthase (G6PS) and dihydrofolate reductase (DHFR) active sites were performed to explore the possible molecular mechanisms of actions. Acceptable drug-likeness properties were found. This study may shed light on further rational design of substituted NTZ as broad-spectrum more potent antimicrobial candidates.

5.
ACS Appl Bio Mater ; 6(10): 4158-4167, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37737110

RESUMEN

Tetrazole-based easily synthesizable fluorogenic probes have been developed that can form self-assembled nanostructures in the aqueous medium. Though the compounds could achieve detection of cyanide ions in apolar solvents, such as, THF, significant interference was observed from other basic anions, such as F-, AcO-, H2PO4-, etc. On the other hand, a highly specific response was observed for CN- ions in the aqueous medium. However, the sensitivity was so poor that it could hardly be useful for real-life sample analysis. Interestingly, the co-assembly of such probe molecules with hydroxyethyl-anchored amphoteric surfactants could drastically improve the sensitivity toward CN- ions in water without dampening their excellent selectivity. Also, it was observed that the degree of fluorescence response for CN- ions depends on the nature of the polyaromatic scaffolds (naphthyl vs anthracenyl), the nature of the surfactant assembly (micelle vs vesicle), etc. The mechanistic investigation indicates the hydrogen bonding interaction between the tetrazole -NH group and cyanide ions in the aqueous medium, which can effectively change the electronics of the tetrazole unit, resulting in alteration in the extent of charge transfer interaction. Then, the biocompatible composite materials (dye-surfactant assemblies at different ratios) were tested for antituberculosis activity. Fortunately, in a few cases, the compositions were found to be as effective as the commercially available antituberculosis drug, ethambutol.


Asunto(s)
Cianuros , Tensoactivos , Cianuros/análisis , Cianuros/química , Tensoactivos/farmacología , Colorantes Fluorescentes/farmacología , Colorantes Fluorescentes/química , Aniones , Agua/química , Antituberculosos/farmacología , Antituberculosos/análisis
6.
ACS Omega ; 8(18): 16228-16240, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37179626

RESUMEN

In pursuit of new antitubercular agents, we here report the antimycobacterial (H37Rv) and DNA gyrase inhibitory potential of daidzein and khellin natural products (NPs). We procured a total of 16 NPs based on their pharmacophoric similarities with known antimycobacterial compounds. The H37Rv strain of M. tuberculosis was found to be susceptible to only two out of the 16 NPs procured; specifically, daidzein and khellin each exhibited an MIC of 25 µg/mL. Moreover, daidzein and khellin inhibited the DNA gyrase enzyme with IC50 values of 0.042 and 0.822 µg/mL, respectively, compared to ciprofloxacin with an IC50 value of 0.018 µg/mL. Daidzein and khellin were found to have lower toxicity toward the vero cell line, with IC50 values of 160.81 and 300.23 µg/mL, respectively. Further, molecular docking study and MD simulation of daidzein indicated that it remained stable inside the cavity of DNA GyrB domain for 100 ns.

7.
Bioorg Chem ; 132: 106344, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36669356

RESUMEN

In this study, new derivatives of the antitubercular and anti-inflammatory drug, 4-aminosaliclic acids (4-ASA) were synthesized, characterized, and evaluated for these activities. In vivo and in viro evaluation of anti-inflammatory activity revealed that compounds 10, 19 and 20 are the most active with potent cyclooxygenase-2 (COX-2) and 5-lipooxgenase (5-LOX) inhibition and without causing gasric lesions. The minimum inhibitory concentrations (MIC) of the newly synthesized compound were, also, measured against Mycobacterium tuberculosis H37RV. Among the tested compounds 17, 19 and 20 exhibited significant activities against the growth of M. tuberculosis. 20 is the most potent with (MIC 1.04 µM) 2.5 folds more potent than the parent drug 4-ASA. 20 displayed low cytotoxicity against normal cell providing a high therapeutic index. Important structure features were analyzed by docking and structure-activity relationship analysis to give better insights into the structural determinants for predicting the anti-inflammatory and anti-TB activities. Our results indicated that compounds 19 and 20 are potential lead compounds for the discovery of dual anti-inflammatory and anti-TB drug candidates.


Asunto(s)
Ácido Aminosalicílico , Mycobacterium tuberculosis , Simulación del Acoplamiento Molecular , Antiinflamatorios/farmacología , Antituberculosos/química , Relación Estructura-Actividad , Estructura Molecular , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...