Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Org Lett ; 26(11): 2303-2308, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38457440

RESUMEN

The phosphoryl radical is well-known to participate in addition reactions with alkenes/alkynes. Here, we report a novel reaction mode of the phosphoryl radical where it participates in halogen atom transfer (XAT) with electron deficient vinyl halides instead of a facile addition reaction. Nevertheless, in comparison with aryl and alkyl halides, the exploitation of vinyl halides into a carbon radical via XAT is quite rare. This protocol provides an opportunity for direct hydrosulfonylation of numerous internal as well as terminal alkynes to get various Z-vinyl sulfones under environmentally benign conditions. Generation of the phosphoryl radical in the open air, water as a solvent, excellent functional group compatibility, and exceptional chemoselectivity are the attractive features of the present methodology.

2.
Curr Drug Deliv ; 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38243938

RESUMEN

Respiratory disorders, such as tuberculosis, cystic fibrosis, chronic obstructive pulmonary disease, asthma, lung cancer, and pulmonary inflammation, are among the most prevalent ailments in today's world. Dextran, an exopolysaccharide formed by Leuconostoc mesenteroides (slimeproducing bacteria), and its derivatives are investigated for several therapeutic utilities. Dextranbased drug delivery system can become an innovative strategy in the treatment of several respiratory ailments as it offers numerous advantages, such as mucolytic action, airway hydration, antiinflammatory properties, and radioprotective effect as compared to other polysaccharides. Being biocompatible, flexible hydrophilic nature, biodegradable, tasteless, odourless, non-mutagenic, watersoluble and non-toxic edible polymer, dextran-based drug delivery systems have been explored for a wide range of therapeutic applications, especially in lungs and respiratory diseases. The present article comprehensively discusses various derivatives of dextran with their attributes to be considered for drug delivery and extensive therapeutic benefits, with a special emphasis on the armamentarium of dextran-based formulations for the treatment of respiratory disorders and associated pathological conditions. The information provided will act as a platform for formulation scientists as important considerations in designing therapeutic approaches for lung and respiratory diseases. With an emphasis on lung illnesses, this article will offer an in-depth understanding of dextran-based delivery systems in respiratory illnesses.

3.
Hypertension ; 80(12): 2506-2514, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37767725

RESUMEN

Nearly 1.4 billion people worldwide suffer from arterial hypertension, a significant risk factor for cardiovascular disease which is now the leading cause of death. Despite numerous drugs designed to treat hypertension, only ≈14% of hypertensive individuals have their blood pressure under control. A critical factor negatively impacting the efficacy of available treatments is their poor bioavailability. This leads to increased dosing requirements which can result in more side effects, resulting in patient noncompliance. A recent solution to improve dosing and bioavailability issues has been to incorporate drugs into nanoparticle carriers, with over 50 nanodrugs currently on the market across all diseases, and another 51 currently in clinical trials. Given their ability to improve solubility and bioavailability, nanoparticles may offer significant advantages in the formulation of antihypertensives to overcome pharmacokinetic shortcomings. To date, however, no antihypertensive nanoformulations have been clinically approved. This review assesses in vivo study data from preclinical antihypertensive nanoformulation development and testing. Combined, the results of these studies suggest nanoformulation of antihypertensive drugs may be a promising solution to overcome the poor efficacy of currently available antihypertensives, and with further advances has the potential to open paths for new substances that have heretofore been clinically unrealistic due to poor bioavailability.


Asunto(s)
Enfermedades Cardiovasculares , Hipertensión , Nanopartículas , Humanos , Antihipertensivos , Presión Sanguínea , Enfermedades Cardiovasculares/tratamiento farmacológico
4.
Front Nutr ; 10: 1129723, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37554703

RESUMEN

Nowadays, the human population is more concerned about their diet and very specific in choosing their food sources to ensure a healthy lifestyle and avoid diseases. So people are shifting to more smart nutritious food choices other than regular cereals and staple foods they have been eating for a long time. Pseudocereals, especially, amaranth and quinoa, are important alternatives to traditional cereals due to comparatively higher nutrition, essential minerals, amino acids, and zero gluten. Both Amaranchaceae crops are low-input demanding and hardy plants tolerant to stress, drought, and salinity conditions. Thus, these crops may benefit developing countries that follow subsistence agriculture and have limited farming resources. However, these are underutilized orphan crops, and the efforts to improve them by reducing their saponin content remain ignored for a long time. Furthermore, these crops have very rich variability, but the progress of their genetic gain for getting high-yielding genotypes is slow. Realizing problems in traditional cereals and opting for crop diversification to tackle climate change, research should be focused on the genetic improvement for low saponin, nutritionally rich, tolerant to biotic and abiotic stresses, location-specific photoperiod, and high yielding varietal development of amaranth and quinoa to expand their commercial cultivation. The latest technologies that can accelerate the breeding to improve yield and quality in these crops are much behind and slower than the already established major crops of the world. We could learn from past mistakes and utilize the latest trends such as CRISPR/Cas, TILLING, and RNA interference (RNAi) technology to improve these pseudocereals genetically. Hence, the study reviewed important nutrition quality traits, morphological descriptors, their breeding behavior, available genetic resources, and breeding approaches for these crops to shed light on future breeding strategies to develop superior genotypes.

5.
Polymers (Basel) ; 15(14)2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37514522

RESUMEN

Curcumin (CUR) has potent anticancer activities, and its bioformulations, including biodegradable polymers, are increasingly able to improve CUR's solubility, stability, and delivery to cancer cells. In this study, copolymers comprising poly (L-lactide)-poly (ethylene glycol)-poly (L-lactide) (PLA-PEG-PLA) and poly (ethylene glycol)-poly (L-lactide)-poly (ethylene glycol) (PEG-PLA-PEG) were designed and synthesized to assess and compare their CUR-delivery capacity and inhibitory potency on MCF-7 breast cancer cells. Molecular dynamics simulations and free energy analysis indicated that PLA-PEG-PLA has a higher propensity to interact with the cell membrane and more negative free energy, suggesting it is the better carrier for cell membrane penetration. To characterize the copolymer synthesis, Fourier transform-infrared (FT-IR) and proton nuclear magnetic resonance (1H-NMR) were employed, copolymer size was measured using dynamic light scattering (DLS), and their surface charge was determined by zeta potential analysis. Characterization indicated that the ring-opening polymerization (ROP) reaction was optimal for synthesizing high-quality polymers. Microspheres comprising the copolymers were then synthesized successfully. Of the two formulations, PLA-PEG-PLA experimentally exhibited better results, with an initial burst release of 17.5%, followed by a slow, constant release of the encapsulated drug up to 80%. PLA-PEG-PLA-CUR showed a significant increase in cell death in MCF-7 cancer cells (IC50 = 23.01 ± 0.85 µM) based on the MTT assay. These data were consistent with gene expression studies of Bax, Bcl2, and hTERT, which showed that PLA-PEG-PLA-CUR induced apoptosis more efficiently in these cells. Through the integration of nano-informatics and in vitro approaches, our study determined that PLA-PEG-PLA-CUR is an optimal system for delivering curcumin to inhibit cancer cells.

6.
Cureus ; 15(6): e40932, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37519552

RESUMEN

Aim We aim to study the spectrum of imaging findings in patients with rhino-oculo-cerebral mucormycosis (ROCM). Materials and methods This retrospective descriptive study was performed in histopathologically confirmed cases of rhino-oculo-cerebral mucormycosis in a tertiary care center in Bihar, India. The case records of patients with radiological, cultural, and histological evidence of acute invasive ROCM were retrospectively evaluated for relevant radiological and clinical data between May 2021 and June 2022. Results The radiological evaluation included computed tomography (CT) and magnetic resonance imaging (MRI) scans done on 52 patients. The patient's average age was 48 years. The ethmoid sinus was involved in 51 (98%) cases and the maxillary sinus in 50 (96%) cases. Bilateral sinus involvement (45, 86%) was the most common, followed by pansinus involvement (27, 52%). The orbit was involved in 39 (75%) cases, the face in 25 (47%) cases, and retroantral fat stranding in 24 (46%) cases. Mucosal thickening (91%) was the most common pattern of involvement, followed by complete opacification (77%). Osseous involvement was seen in 17 of 44 patients who had CT scans, and the majority of patients had extrasinus extension with intact bone. MRI revealed variable T2SI, with T2 hyperintensity being the most common pattern. Heterogeneous enhancement in post-contrast imaging was the most common. Conclusion ROCM is a life-threatening invasive fungal infection, especially in an immunocompromised state. ROCM is characterized by a variety of imaging abnormalities on CT and MRI, although nonspecific. Imaging aids in suspicion or early diagnosis in appropriate clinical contexts, particularly in an immunocompromised state, and in determining the degree of involvement and complications. Early detection of ROCM and its complications enables proper treatment, which can lower the cost of care, morbidity, and mortality.

7.
Heliyon ; 9(6): e17321, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37441387

RESUMEN

The rice-maize system is a dominant cropping system of south Asia and consumes a considerable amount of fertilizer. The indiscriminate use of fertilizer particularly nitrogen (N) is degrading the soil health and polluting the environment. Lower N-use efficiency is a major problem and needs to be improved for higher yield, lower cost of cultivation and better environment. The grain quality is also altered by the N-application as N is a major constituent of protein. Studies on the effect of N-application on grain N-content is still lacking. We hypothesised that optimization of N application would result in economising N dose, improving yield and NUE and improving grain quality. Under that context, a field experiment was conducted with different doses of fertilizer N for rice and maize. Fertilizer N was applied at the rate of 0, 40, 80, 120, 160, 200 and 240 kg ha-1 (N0-N240). An increase in grain yield was observed up to 80 and 160 kg ha-1 for rice and maize, respectively. The N content of grain increased with N rates and a significant increase was noted in N200 (1.42%) being at par with N240 (1.49%) but significantly higher than others by 13-32%. With an increase of each kilogram of N, the grain N content increased by 14 and 20 µg (microgram) for rice and maize, respectively. The leaf N content registered a decreasing trend with the progress of the crop growth for both rice and maize. The agronomic efficiency (AE) of N initially increased with an increase in the rate of fertilizer N followed by a decrease with higher doses of N. Unlike the AE, the partial factor productivity (PFP) of N decreased gradually with an increase in the rate of fertilizer N. The chlorophyll content of flag leaves also registered an increasing trend with an increasing rate of fertilizer N. On the surface soil (0-15 cm), the treatments which received lower (N0, N40) and higher (N240) fertilizer N recorded a comparatively higher total soil N than other treatments. The mean NUE was 0.42 and 0.75 for rice and maize, respectively. The study suggests an economic fertilizer N rate of 165 and 167 kg N ha-1, for rice and maize, respectively. It also concludes that the grain N content can be altered by N-application rates though more research is needed.

8.
Cureus ; 15(5): e39144, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37378152

RESUMEN

Background The posterior fossa is situated between the tentorium cerebelli above and the foramen magnum below. Vital structures like the cerebellum, the pons, and the medulla are situated within it; hence, tumors within the posterior fossa are considered one of the most critical brain lesions. Children are more likely to develop posterior fossa tumors than adults. Diffusion-weighted imaging (DWI) and magnetic resonance spectroscopy (MRS) sequences along with the conventional MRI help in providing additional information in the characterization of the various posterior fossa tumors. We hereby present a series of 30 patients with clinically suspected posterior fossa masses who underwent preoperative MRI. Objectives This study aims to differentiate the neoplastic from non-neoplastic posterior fossa mass by evaluating the diffusion restriction pattern on DWI, quantifying the apparent diffusion coefficient (ADC) map in various posterior fossa tumors, and comparing the different metabolites of various posterior fossa tumors on MRS. Results Out of the 30 patients with posterior fossa lesions, 18 were males and 12 were females. Eight of them were in the pediatric age group, while twenty-two of them were adults. Metastasis was the most common posterior fossa lesion in our study sample and was found in six patients (20%), followed by vestibular schwannomas (17%) and arachnoid cysts (13%), meningiomas, medulloblastoma, and pilocytic astrocytoma (10% each) and epidermoid, ependymoma, and hemangioblastoma (7% each). The mean ADC value of benign tumors was higher than that of malignant tumors, and this difference was found to be significant (p = 0.012). The cut-off ADC value 1.21x 10-3mm2/s had a sensitivity of 81.82% and specificity of 80.47%. MRS metabolites played an additional role in differentiating benign from malignant tumors. Conclusion A combination of conventional MRI, DWI, ADC values, and MRS metabolites showed good diagnostic accuracy to differentiate between the various posterior fossa neoplastic tumors both in adults and children.

9.
Cureus ; 15(3): e36776, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37123666

RESUMEN

Introduction Due to its ease of use, lack of ionizing radiation exposure, noninvasive nature, reproducibility, low cost, and ease of accessibility, ultrasound (US) is the preferred imaging modality for evaluating scrotal disease. High-resolution US and color Doppler better highlight scrotal and testicular diseases because of the scrotum's superficial anatomy. The genital organs are subjected to damaging ionizing radiation during CT, while MRI is both costly and uncommon. Aims and objectives The aim of this study is to use ultrasonography (USG) to examine various scrotal diseases and to diagnose and identify different disorders utilizing high-resolution US and color Doppler. Materials and methods The study was done on 60 patients who were referred to the Department of Radiodiagnosis by the General Surgery and Urology departments for the scrotal US and Doppler study. This study was conducted between October 2021 and March 2022 at the Indira Gandhi Institute of Medical Sciences, Patna, India. Results Out of 60 patients, hydrocele was seen in 25 cases, scrotal hernia in 12 cases, undescended testis in eight cases, varicocele and epididymal cysts in seven cases, etc. In acutely painful scrotal disorders, high-frequency US with color Doppler sonography successfully distinguishes between testicular ischemia/torsion and acute inflammatory illnesses. Eighteen cases of inflammatory scrotal pathologies and one case of testicular torsion were seen.  Conclusion In detecting and assessing scrotal diseases, high-frequency USG and color Doppler sonography have good sensitivity and specificity. Furthermore, the lack of ionizing radiation, simplicity, wide availability, cost-efficiency, and reproducibility make it a highly important method for scrotal diseases.

10.
Immunobiology ; 228(3): 152392, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37182442

RESUMEN

INTRODUCTION: SARS-CoV-2 has infected over 753 million individuals and caused more than 6.8 million deaths globally to date. COVID-19 disease severity has been associated with SARS-CoV-2 induced hyper inflammation and the immune correlation with its pathogenesis remains unclear. Acute viral infection is characterised by vigorous coordinated innate and adaptive activation, including an early cellular response that correlates well with the amplitude of virus specific humoral response. OBJECTIVE: The present study covers a wide spectrum of cellular immune response against COVID-19, irrespective of infection and vaccination. METHODS: We analysed immune status of (a) COVID-19 hospitalised patients including deceased and recovered patients, and compared with home isolated and non-infected healthy individuals, and (b) infected home isolated individuals with vaccinated individuals, using flow cytometry. We performed flow cytometry analysis of PBMCs to determine non-specific cell-mediated immune response. RESULTS: The immune response revealed extensive induction and activation of multiple immune lineages, including T and B cells, Th17 regulatory subsets and M1, M2 macrophages in deceased and hospitalised recovered patients, vaccinated and healthy individuals. Compromised immune cell expression was observed in deceased patients even in later stages, while expression was restored in hospitalised recovered patients and home isolated individuals. CONCLUSION: The findings associated with recovery and convalescence define a new signature of cellular immune response that persists in individuals with SARS-CoV-2 infection and vaccination. The findings will help in providing a better understanding of COVID-19 disease and will aid in developing better therapeutic strategies for treatment.


Asunto(s)
COVID-19 , Humanos , Citometría de Flujo , SARS-CoV-2 , Linfocitos B , Vacunación , Inmunidad Celular , Anticuerpos Antivirales
11.
Nanomaterials (Basel) ; 13(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37110983

RESUMEN

Herein, we have developed a one-pot methodology to synthesise three types of C-dots and their activated counterparts from three different types of waste plastic precursors such as poly-bags, cups and bottles. The optical studies have shown the significant change in the absorption edge in case of C-dots in comparison to their activated counterparts. The respective variation in the sizes is correlated with the change in electronic band gap values of formed particles. The changes in the luminescence behaviour are also correlated with transitions from the edge of the core of formed particles. The obtained variations in the Stokes shift values of C-dots, and their ACs were used to explore the types of surface states and their related transitions in particles. The mode of interaction between C-dots and their ACs was also determined using solvent-dependent fluorescence spectroscopy. This detailed investigation could provide significant insight on the emission behaviour and the potential usage of formed particles as an effective fluorescent probe in sensing applications.

12.
Front Pharmacol ; 14: 1125093, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033603

RESUMEN

Cancer causes significant mortality and morbidity worldwide, but existing pharmacological treatments are greatly limited by the inherent heterogeneity of cancer as a disease, as well as the unsatisfactory efficacy and specificity of therapeutic drugs. Biopharmaceutical barriers such as low permeability and poor water solubility, along with the absence of active targeting capabilities, often result in suboptimal clinical results. The difficulty of successfully reaching and destroying tumor cells is also often compounded with undesirable impacts on healthy tissue, including off-target effects and high toxicity, which further impair the ability to effectively manage the disease and optimize patient outcomes. However, in the last few decades, the development of nanotherapeutics has allowed for the use of rational design in order to maximize therapeutic success. Advances in the fabrication of nano-sized delivery systems, coupled with a variety of surface engineering strategies to promote customization, have resulted in promising approaches for targeted, site-specific drug delivery with fewer unwanted effects and better therapeutic efficacy. These nano systems have been able to overcome some of the challenges of conventional drug delivery related to pharmacokinetics, biodistribution, and target specificity. In particular, lipid-based nanosystems have been extensively explored due to their high biocompatibility, versatility, and adaptability. Lipid-based approaches to cancer treatment are varied and diverse, including liposomal therapeutics, lipidic nanoemulsions, solid lipid nanoparticles, nanostructured lipidic carriers, lipid-polymer nanohybrids, and supramolecular nanolipidic structures. This review aims to provide an overview of the use of diverse formulations of lipid-engineered nanotherapeutics for cancer and current challenges in the field, as researchers attempt to successfully translate these approaches from bench to clinic.

13.
ACS Appl Mater Interfaces ; 15(16): 19904-19920, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37046174

RESUMEN

Combining antiangiogenic and chemotherapeutic agents has shown promising clinical benefits in cancer cures when the therapeutic intervention takes into account the tissue and molecular targets. Moreover, the risk of induced drug resistance is minimized when multiple pathways are involved in the treatment regimen, yielding a better therapeutic outcome. Nanodrug delivery systems have proven to be a prudent approach to treating complex disease pathologies. As such, combining antiangiogenic and chemotherapeutic drugs within multimodal nanocarriers synergistically augments the clinical efficiency of the drugs. This study reports the combinatorial efficacy of heparin (Hep), selenium NPs (SeNPs), and doxorubicin (Dox) to inhibit tumor growth and progression. Both Se@Hep-NPs and Se@Hep-Dox-NPs with excellent water dispersity having a size and charge in the range of 250 ± 5 and 253 ± 5 nm and -53 ± 0.4 and -48.4 ± 6.4 mV, respectively, showed strong anticancer potential assessed through in vitro assays like cell viability, specificity, colony formation, and wound scratch in MCF7 cells. Strong synergistic interactions among SeNPs, Hep, and Dox in Se@Hep-Dox-NPs render it to be an antiangiogenic and proapoptotic cancer cell death inducers. In vivo imaging highlights the dual-mode attributes of Se@Hep-NPs with desirable passive tumor targeting and biomedical imaging ability when tagged with Cy7.5, while Se@Hep-Dox-NPs significantly reduce the tumor burden and prolong the longevity of subcutaneous EAC-bearing mice. Histopathology studies reveal no signs of toxicity in major organs. Collectively, these results qualify Se@Hep-Dox-NPs as a plausible clinical therapeutic candidate.


Asunto(s)
Antineoplásicos , Nanopartículas , Selenio , Animales , Ratones , Selenio/farmacología , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Apoptosis , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Antineoplásicos/farmacología , Heparina/farmacología , Nanopartículas/uso terapéutico , Línea Celular Tumoral
14.
Sci Rep ; 13(1): 4038, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36899053

RESUMEN

The oral cavity of human contains bacteria that are critical for maintaining the homeostasis of the body. External stressors such as high altitude (HA) and low oxygen affect the human gut, skin and oral microbiome. However, compared to the human gut and skin microbiome, studies demonstrating the impact of altitude on human oral microbiota are currently scarce. Alterations in the oral microbiome have been reported to be associated with various periodontal diseases. In light of the increased occurrence of HA oral health related problems, the effect of HA on the oral salivary microbiome was investigated. We conducted a pilot study in 16 male subjects at two different heights i.e., H1 (210 m) and H2 (4420 m). Total of 31 saliva samples,16 at H1 and 15 at H2 were analyzed by utilizing the 16S rRNA high-throughput sequencing, to explore the relationship between the HA environment and salivary microbiota. The preliminary results suggesting that, the most abundant microbiome at the phylum level are: Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. Interestingly, 11 genera were identified at the both heights with different relative abundances. In addition, the salivary microbiome was more diverse at H1 compared to H2 as demonstrated by decreased alpha diversity. Further, predicted functional results indicate that microbial metabolic profiles significantly decreased at H2 as compared to H1, including two major metabolic pathways involving carbohydrates, and amino acids. Our findings show that HA induces shifts in the composition and structure of human oral microbiota which can affect host health homeostasis.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Masculino , Altitud , ARN Ribosómico 16S/genética , Proyectos Piloto , Microbioma Gastrointestinal/genética , Microbiota/genética , Bacterias/genética
16.
Int J Microbiol ; 2022: 8168000, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36536809

RESUMEN

Background: The Acinetobacter species is an important hospital-acquired pathogen. The rapid development of resistance to multiple drugs and the ability to form biofilm make these bacteria more adaptable to survive in healthcare facilities, thus posing a challenge to their effective management. Objective: This study aimed to characterize clinical isolates of Acinetobacter spp and to study their antimicrobial susceptibility patterns and ability to form biofilm. Resistant Acinetobacter was further analyzed for the detection of extended-spectrum ß-lactamases (ESBLs), metallo ß-lactamases (MBLs), carbapenemase production, and presence of blaNDM-1 gene. Materials and Methods: A total of 324 Acinetobacter species were isolated from various clinical specimens which were submitted to the Department of Microbiology, B.P. Koirala Institute of Health Sciences, Dharan, Nepal, and were studied for antibiotic susceptibility testing, detection of ESBL and MBL production, and formerly biofilm formation was performed by standard microbiological methods. PCR was carried out to determine the presence of the blaNDM-1 gene. Results: The predominant Acinetobacter species isolated was A calcoaceticus-baumannii Complex (Acb complex) 167 (51.5%). Among those, all A. species 128 (40%) were multidrug resistant (MDR). In which 13 (4.0%) were ESBL producers, 70 (61.9%) were MBL, and 12 (10.6%) were carbapenemases producers. The blaNDM1 gene was present in 33 isolates. Thirty-seven percent (121/324) of isolates formed biofilm. The majority of A. species were resistant to cefotaxime 73.8% (239) and cefepime 74.4% (241). A significant proportion of biofilm producers were MDR (p < 0.001). Conclusion: Drug-resistant Acinetobacter formed a substantial proportion of this hospital's samples with a large presence of the bla NDM-1 gene. A matter of great concern is the association of multidrug-resistant phenotype with biofilm formation. This situation warranted stringent surveillance and adherence to infection prevention and control practices.

17.
Biochemistry ; 61(21): 2267-2279, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36219819

RESUMEN

Establishing a potent scheme against α-synuclein aggregation involved in Parkinson's disease has been evaluated as a promising route to identify compounds that either inhibit or promote the aggregation process of α-synuclein. In the last two decades, this perspective has guided a dramatic increase in the efforts, focused on developing potent drugs either for retardation or promotion of the self-assembly process of α-synuclein. To address this issue, using a chemical kinetics platform, we developed a strategy that enabled a progressively detailed analysis of the molecular events leading to protein aggregation at the microscopic level in the presence of a recently synthesized 2-hydroxyisophthalamide class of small organic molecules based on their binding affinity. Furthermore, qualitatively, we have developed a strategy of disintegration of α-synuclein fibrils in the presence of these organic molecules. Finally, we have shown that these organic molecules effectively suppress the toxicity of α-synuclein oligomers in neuron cells.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/química , Agregado de Proteínas , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Neuronas/metabolismo
18.
Molecules ; 27(16)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36014567

RESUMEN

The transformation of biowaste into products with added value offers a lucrative role in nation-building. The current work describes the synthesis of highly water-soluble, luminous carbon quantum dots (CQDs) in the size range of 5-10 nm from discarded rice straw. The small spherical CQDs that were formed had outstanding optical and luminescent qualities as well as good photostabilities. By performing quantitative multi-assay tests that included antioxidant activities, in vitro stability and colloidal assay investigations as a function of different CQD concentrations, the biocompatibility of CQDs was evaluated. To clearly visualize the type of surface defects and emissive states in produced CQDs, excitation-dependent fluorescence emission experiments have also been carried out. The "waste-to-wealth" strategy that has been devised is a successful step toward the quick and accurate detection of Cu2+ ion in aqueous conditions. The fluorescence-quenching behavior has specified the concentration dependency of the developed sensor in the range of 50 µM to 10 nM, with detection limit value of 0.31 nM. The main advantage of the current research is that it offers a more environmentally friendly, economically viable and scaled-up synthesis of toxicologically screened CQDs for the quick fluorescence detection of Cu2+ ions and opens up new possibilities in wastewater management.


Asunto(s)
Carbono , Puntos Cuánticos , Colorantes Fluorescentes , Iones , Luminiscencia , Agua
19.
Sci Total Environ ; 837: 155593, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35490802

RESUMEN

Agronomical providence of nanoparticles in enhancing food productivity has brought new revolution in agricultural sector. However, the comprehensive ingenuity of their synergetic impact on environment and living flora and fauna is still poorly explored. The current study endeavours to tackle this apprehension by systematically exploring the agronomical paradigm of six different types of C-dots derived from natural biomass and plastic waste on the four different types of seeds viz. black chick peas (Cicer arietinum), barley (Hordeum vulgare), mung beans (Vigna radiata) and wheat (Triticum aestivum) at room temperature. C-dots have displayed a dose responsive effect (250 to 5000 mg/L) on the growth of chosen seeds, including the elongation of root length and coleoptile length. The development of seedlings under atmospheric conditions exhibited excellent physiological stability in presence of synthesized C-dots for all types of seeds with concentrations as high as 3000 mg/L for dry seed. The direct exposure of C-dots resulted in enhanced growth as compared to the water exposure and considered as the most important novel aspect of present work. The developed C-dots provide more nutrient content and easy penetration to the seeds due to their enhanced surface area and very small size. The germination and Vigor index have also been augmented in presence of C-dots after 7 days of exposure. C-dots have affected the chlorophyll content in mung beans as a function of time and concentration. The developed C-dots possess excellent biocompatible behaviour and help in the complete growth of the different types of seeds which suggest their enhanced utilization in the agronomical field. This is one of the detailed studies, which explore the impact of C-dots on widely used food crops with the non-toxic and biocompatible C-dots. The information achieved herein will allow the usage of C-dots as a capable nanopriming agent for the natural germination of seeds.


Asunto(s)
Cicer , Fabaceae , Hordeum , Vigna , Biomasa , Germinación , Plásticos/toxicidad , Semillas , Triticum
20.
Environ Monit Assess ; 194(3): 240, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35237870

RESUMEN

The demand for water is increasing around the world due to population growth, urbanization, industrialization, etc., which is making groundwater a vital natural resource for meeting the growing demand for water. According to the central groundwater report, Jammu district has adequate groundwater potential (GWP) and comes under the safe category. However, the GWP has not been fully utilized, thereby leading to a water shortage in the district. Therefore, this study has been designed to examine the GWP zones in the Tawi River basin of Jammu district using geospatial techniques. For this, several GWP conditioning parameters, such as elevation, slope, geology, geomorphology, rainfall, soil, land use/land cover, topographic wetness index (TWI), drainage density, lineament density, roughness, and curvature, were utilized. The analytical hierarchy process (AHP) technique was used to evaluate the weights of the selected criteria after a pair-wise comparison of each criterion with the rest of the criteria. The result showed that the high GWP zone accounts for 21.98% of the area, the moderate zone covers an area of 40.54%, the low GWP area accounts for about 34.91%, and only 2.57% of the area lies under the very low GWP zone. The validation of GWP zones using 25 monitoring wells showed an accuracy of 80% in GWP modeling. The findings of this study may be utilized in meeting the rising demand for water in the region.


Asunto(s)
Agua Subterránea , Ríos , Monitoreo del Ambiente/métodos , Sistemas de Información Geográfica , India , Abastecimiento de Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...