Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Differ ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849574

RESUMEN

Z-DNA binding protein 1 (ZBP1) has important functions in anti-viral immunity and in the regulation of inflammatory responses. ZBP1 induces necroptosis by directly engaging and activating RIPK3, however, the mechanisms by which ZBP1 induces inflammation and in particular the role of RIPK1 and the contribution of cell death-independent signaling remain elusive. Here we show that ZBP1 causes skin inflammation by inducing RIPK3-mediated necroptosis and RIPK1-caspase-8-mediated apoptosis in keratinocytes. ZBP1 induced TNFR1-independent skin inflammation in mice with epidermis-specific ablation of FADD by triggering keratinocyte necroptosis. Moreover, transgenic expression of C-terminally truncated constitutively active ZBP1 (ZBP1ca) in mouse epidermis caused skin inflammation that was only partially inhibited by abrogation of RIPK3-MLKL-dependent necroptosis and fully prevented by combined deficiency in MLKL and caspase-8. Importantly, ZBP1ca induced caspase-8-mediated skin inflammation by RHIM-dependent but kinase activity-independent RIPK1 signaling. Furthermore, ZBP1ca-induced inflammatory cytokine production in the skin was completely prevented by combined inhibition of apoptosis and necroptosis arguing against a cell death-independent pro-inflammatory function of ZBP1. Collectively, these results showed that ZBP1 induces inflammation by activating necroptosis and RIPK1 kinase activity-independent apoptosis.

2.
Immunol Cell Biol ; 101(9): 783-788, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37694341

RESUMEN

In this Commentary article, as part of the 100-year celebrations of the journal, we reflect on the contribution of articles published in ICB in the field of tumor immunology. A highlight is a series of interviews conducted with three Australian-based ICB authors who have contributed key papers over the years: Rajiv Khanna, Delia Nelson and Ian Frazer.


Asunto(s)
Neoplasias , Publicaciones , Humanos , Australia
3.
Front Immunol ; 13: 1028435, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466878

RESUMEN

Inflammatory skin conditions are the 4th leading cause of non-fatal health burden in the general population worldwide. The diagnosis of skin lesions due to systemic drug reactions, viral or bacterial exanthems, or in patients with psoriasis, atopic dermatitis or contact dermatitis is often difficult and relies heavily upon conventional histopathologic examination. Conversely, it is widely accepted that the cutaneous profile of inflammatory markers, or 'inflammatory signature', is differentially expressed in various skin conditions. In this pilot study, we investigated the possibility of inflammatory skin disease diagnosis from an immunological perspective in small punch biopsies. We collected lesional and perilesional punch biopsies from 139 patients suffering from a variety of inflammatory skin conditions and attending the Dermatology Department at the Princess Alexandra Hospital in Brisbane, Australia. Using bead-based immunoassays we were able to measure 13 out of 17 inflammatory markers from a pre-selected multi-analyte panel and to detect significant differences between lesional and perilesional biopsies from each individual patient. Hierarchical and unbiased clustering methods based on inflammatory signatures grouped psoriasis and atopic dermatitis lesions into individual clusters in contrast to other skin conditions, highlighting the potential of inflammatory signatures to be used as diagnostic differentiators and to inform alternative targets in anti-inflammatory treatment strategies.


Asunto(s)
Dermatitis Atópica , Psoriasis , Humanos , Citocinas , Dermatitis Atópica/diagnóstico , Proyectos Piloto , Quimiocinas , Psoriasis/diagnóstico
4.
Biomolecules ; 12(11)2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36359009

RESUMEN

Macrophages regulate cutaneous wound healing by immune surveillance, tissue repair and remodelling. The depletion of dermal macrophages during the early and middle stages of wound healing has a detrimental impact on wound closure, characterised by reduced vessel density, fibroblast and myofibroblast proliferation, delayed re-epithelization and abated post-healing fibrosis and scar formation. However, in some animal species, oral mucosa and foetal life, cutaneous wounds can heal normally and remain scarless without any involvement of macrophages. These paradoxical observations have created much controversy on macrophages' indispensable role in skin wound healing. Advanced knowledge gained by characterising macrophage subsets, their plasticity in switching phenotypes and molecular drivers provides new insights into their functional importance during cutaneous wound healing. In this review, we highlight the recent findings on skin macrophage subsets, their functional role in adult cutaneous wound healing and the potential benefits of targeting them for therapeutic use.


Asunto(s)
Cicatriz , Cicatrización de Heridas , Animales , Cicatrización de Heridas/fisiología , Cicatriz/patología , Piel/patología , Macrófagos , Fibroblastos/patología
5.
Curr Protoc ; 2(7): e485, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35822855

RESUMEN

The skin protects our body from external challenges, insults, and pathogens and consists of two layers, epidermis and dermis. The immune cells of the skin are an integral part of protecting the body and essential for mediating skin immune homeostasis. They are distributed in the epidermal and dermal layers of the skin. Under homeostatic conditions, the mouse and human skin epidermis harbors immune cells such as Langerhans cells and CD8+ T cells, whereas the dermis contains dendritic cells (DCs), mast cells, macrophages, T cells, and neutrophils. Skin immune homeostasis is maintained through communication between epidermal and dermal cells and soluble factors. This communication is important for proper recruitment of immune cells in the skin to mount immune responses during infection/injury or in response to external/internal insults that alter the local cellular milieu. Imbalance in this crosstalk that occurs in association with inflammatory skin disorders such as psoriasis and atopic dermatitis can lead to alterations in the number and type of immune cells contributing to pathological manifestation in these disorders. Profiling changes in the immune cell type, localization, and number can provide important information about disease mechanisms and help design interventional therapeutic strategies. Toward this end, skin cells can be detected and characterized using basic techniques like immunofluorescence, immunohistochemistry, and flow cytometry, and recently developed methods of multiplexing. This article provides an overview on the basic techniques that are widely accessible to researchers to characterize immune cells of the skin. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.


Asunto(s)
Linfocitos T CD8-positivos , Dermatitis Atópica , Animales , Linfocitos T CD8-positivos/patología , Epidermis/patología , Humanos , Queratinocitos , Células de Langerhans , Ratones
6.
Environ Sci Pollut Res Int ; 28(44): 61873-61907, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34553278

RESUMEN

The removal of sulfur- and nitrogen-containing compounds present in petroleum fractions is necessary to meet the stringent environmental regulations and to prevent the environment and humanity from the threats they pose. Conventional hydro-desulfurization and hydro-denitrogenation processes have evolved significantly over the past decade but are limited due to severe operating conditions and inefficiency in removing nitrogen-containing compounds. On the contrary, unconventional non-hydrogen methods for refining of crude oils are beneficial in terms of mild operating conditions and are efficient for eradicating both sulfur- and nitrogen-containing compounds. Despite being efficient for both sulfur and nitrogen-containing compounds, these techniques suffer due to the hindrance posed by the competitive nature of nitrogen-containing compounds. Thus, it is recommended to develop techniques that can remove both the compounds simultaneously and efficiently. Techniques for simultaneous removal of those compounds can also be expected to reduce the number of unit operations required during refining and can be energy-efficient as well. This elaborative review summarizes the developments done in this field in the past two decades. To improve the understanding of the scientific community towards the feasibility of simultaneous desulfurization and denitrogenation processes, the crucial parameters for efficient desulfurization-denitrogenation processes are also discussed. This review can be expected to encourage the scientific community to search for more economical, energy-efficient, and commercializable pathways for desulfurization-denitrogenation of petroleum oil.


Asunto(s)
Petróleo , Azufre , Compuestos de Azufre
7.
Life Sci Alliance ; 4(6)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33858959

RESUMEN

Tumor necrosis factor receptor 1 (TNFR1) activates NF-κB-dependent pro-inflammatory gene expression, but also induces cell death by triggering apoptosis and necroptosis. Inhibition of inhibitor of NF-κB kinase (IKK)/NF-κB signaling in keratinocytes paradoxically unleashed spontaneous TNFR1-mediated skin inflammation in mice, but the underlying mechanisms remain poorly understood. Here, we show that TNFR1 causes skin inflammation in mice with epidermis-specific knockout of IKK2 by inducing receptor interacting protein kinase 1 (RIPK1)-dependent necroptosis, and to a lesser extent also apoptosis, of keratinocytes. Combined epidermis-specific ablation of the NF-κB subunits RelA and c-Rel also caused skin inflammation by inducing TNFR1-mediated keratinocyte necroptosis. Contrary to the currently established model that inhibition of NF-κB-dependent gene transcription causes RIPK1-independent cell death, keratinocyte necroptosis, and skin inflammation in mice with epidermis-specific RelA and c-Rel deficiency also depended on RIPK1 kinase activity. These results advance our understanding of the mechanisms regulating TNFR1-induced cell death and identify RIPK1-mediated necroptosis as a potent driver of skin inflammation.


Asunto(s)
Queratinocitos/metabolismo , Necroptosis/fisiología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Apoptosis/fisiología , Femenino , Quinasa I-kappa B/metabolismo , Inflamación/metabolismo , Queratinocitos/patología , Masculino , Ratones , Ratones Noqueados , FN-kappa B/metabolismo , FN-kappa B/fisiología , Necroptosis/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal , Piel/metabolismo , Piel/patología , Factor de Necrosis Tumoral alfa/farmacología
8.
Nature ; 580(7803): 391-395, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32296175

RESUMEN

The biological function of Z-DNA and Z-RNA, nucleic acid structures with a left-handed double helix, is poorly understood1-3. Z-DNA-binding protein 1 (ZBP1; also known as DAI or DLM-1) is a nucleic acid sensor that contains two Zα domains that bind Z-DNA4,5 and Z-RNA6-8. ZBP1 mediates host defence against some viruses6,7,9-14 by sensing viral nucleic acids6,7,10. RIPK1 deficiency, or mutation of its RIP homotypic interaction motif (RHIM), triggers ZBP1-dependent necroptosis and inflammation in mice15,16. However, the mechanisms that induce ZBP1 activation in the absence of viral infection remain unknown. Here we show that Zα-dependent sensing of endogenous ligands induces ZBP1-mediated perinatal lethality in mice expressing RIPK1 with mutated RHIM (Ripk1mR/mR), skin inflammation in mice with epidermis-specific RIPK1 deficiency (RIPK1E-KO) and colitis in mice with intestinal epithelial-specific FADD deficiency (FADDIEC-KO). Consistently, functional Zα domains were required for ZBP1-induced necroptosis in fibroblasts that were treated with caspase inhibitors or express RIPK1 with mutated RHIM. Inhibition of nuclear export triggered the Zα-dependent activation of RIPK3 in the nucleus resulting in cell death, which suggests that ZBP1 may recognize nuclear Z-form nucleic acids. We found that ZBP1 constitutively bound cellular double-stranded RNA in a Zα-dependent manner. Complementary reads derived from endogenous retroelements were detected in epidermal RNA, which suggests that double-stranded RNA derived from these retroelements may act as a Zα-domain ligand that triggers the activation of ZBP1. Collectively, our results provide evidence that the sensing of endogenous Z-form nucleic acids by ZBP1 triggers RIPK3-dependent necroptosis and inflammation, which could underlie the development of chronic inflammatory conditions-particularly in individuals with mutations in RIPK1 and CASP817-20.


Asunto(s)
Inflamación/metabolismo , Necroptosis , Proteínas de Unión al ARN/metabolismo , Transporte Activo de Núcleo Celular , Animales , Caspasa 8/metabolismo , Femenino , Inflamación/genética , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ácidos Nucleicos/metabolismo , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Enfermedades de la Piel/genética , Enfermedades de la Piel/metabolismo , Enfermedades de la Piel/patología
9.
Nat Commun ; 11(1): 1747, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32269263

RESUMEN

Receptor interacting protein kinase 1 (RIPK1) regulates cell death and inflammatory responses downstream of TNFR1 and other receptors, and has been implicated in the pathogenesis of inflammatory and degenerative diseases. RIPK1 kinase activity induces apoptosis and necroptosis, however the mechanisms and phosphorylation events regulating RIPK1-dependent cell death signaling remain poorly understood. Here we show that RIPK1 autophosphorylation at serine 166 plays a critical role for the activation of RIPK1 kinase-dependent apoptosis and necroptosis. Moreover, we show that S166 phosphorylation is required for RIPK1 kinase-dependent pathogenesis of inflammatory pathologies in vivo in four relevant mouse models. Mechanistically, we provide evidence that trans autophosphorylation at S166 modulates RIPK1 kinase activation but is not by itself sufficient to induce cell death. These results show that S166 autophosphorylation licenses RIPK1 kinase activity to induce downstream cell death signaling and inflammation, suggesting that S166 phosphorylation can serve as a reliable biomarker for RIPK1 kinase-dependent pathologies.


Asunto(s)
Apoptosis , Inflamación/metabolismo , Inflamación/patología , Fosfoserina/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Alanina Transaminasa/metabolismo , Animales , Células de la Médula Ósea/citología , Colitis/patología , Genotipo , Hepatitis/patología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Mutación/genética , Neoplasias/patología , Fosforilación , Sepsis/patología , Piel/patología , Factor de Necrosis Tumoral alfa
10.
Nature ; 580(7804): E10, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32322058

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

11.
Immunol Rev ; 277(1): 113-127, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28462531

RESUMEN

Regulated cell death pathways have important functions in host defense and tissue homeostasis. Studies in genetic mouse models provided evidence that cell death could cause inflammation in different tissues. Inhibition of RIPK3-MLKL-dependent necroptosis by FADD and caspase-8 was identified as a key mechanism preventing inflammation in epithelial barriers. Moreover, the interplay between IKK/NF-κB and RIPK1 signaling was recognized as a critical determinant of tissue homeostasis and inflammation. NEMO was shown to regulate RIPK1 kinase activity-mediated apoptosis by NF-κB-dependent and -independent functions, which are critical for averting chronic tissue injury and inflammation in the intestine and the liver. In addition, RIPK1 was shown to exhibit kinase activity-independent functions that are essential for preventing cell death, maintaining tissue architecture and inhibiting inflammation. In the intestine, RIPK1 acts as a scaffold to prevent epithelial cell apoptosis and preserve tissue integrity. In the skin, RIPK1 functions via its RHIM to counteract ZBP1/DAI-dependent activation of RIPK3-MLKL-dependent necroptosis and inflammation. Collectively, these studies provided evidence that the regulation of cell death signaling plays an important role in the maintenance of tissue homeostasis, and suggested that cell death could be causally involved in the pathogenesis of inflammatory diseases.


Asunto(s)
Quinasa I-kappa B/metabolismo , FN-kappa B/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Muerte Celular , Homeostasis , Humanos , Inflamación , Transducción de Señal , Cicatrización de Heridas
12.
Curr Top Microbiol Immunol ; 403: 77-93, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-26275873

RESUMEN

The presence of dying cells in inflamed tissues has been recognized since many years, but until recently cell death was considered primarily a consequence of inflammation. Recent data in mouse models suggest that cell death could provide a potent trigger of inflammation. The identification of necroptosis as a new type of regulated necrotic cell death that is induced by death receptors, toll like receptors and type I interferon receptor indicated that necroptosis could contribute to the proinflammatory properties of these receptors. This is particularly relevant to the skin, a tissue that provides a life-sustaining structural and immunological barrier with the environment and is constantly exposed to mechanical, chemical, and microbial insults. Studies in mouse models showed that sensitization of keratinocytes to apoptosis or necroptosis triggered by TNF and other stimuli causes severe chronic inflammatory skin lesions. In addition, keratinocyte death is a prominent histopathological feature of many inflammatory skin diseases, suggesting that death of epithelial cells could contribute to the pathogenesis of skin inflammation . Here we review recent studies in genetic mouse models providing evidence that keratinocyte death is a potent trigger of skin inflammation and discuss their potential relevance for human inflammatory skin diseases.


Asunto(s)
Muerte Celular/fisiología , Células Epiteliales/patología , Inflamación/patología , Piel/patología , Animales , Humanos
13.
Nature ; 540(7631): 124-128, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27819681

RESUMEN

Receptor-interacting protein kinase 1 (RIPK1) regulates cell death and inflammation through kinase-dependent and -independent functions. RIPK1 kinase activity induces caspase-8-dependent apoptosis and RIPK3 and mixed lineage kinase like (MLKL)-dependent necroptosis. In addition, RIPK1 inhibits apoptosis and necroptosis through kinase-independent functions, which are important for late embryonic development and the prevention of inflammation in epithelial barriers. The mechanism by which RIPK1 counteracts RIPK3-MLKL-mediated necroptosis has remained unknown. Here we show that RIPK1 prevents skin inflammation by inhibiting activation of RIPK3-MLKL-dependent necroptosis mediated by Z-DNA binding protein 1 (ZBP1, also known as DAI or DLM1). ZBP1 deficiency inhibited keratinocyte necroptosis and skin inflammation in mice with epidermis-specific RIPK1 knockout. Moreover, mutation of the conserved RIP homotypic interaction motif (RHIM) of endogenous mouse RIPK1 (RIPK1mRHIM) caused perinatal lethality that was prevented by RIPK3, MLKL or ZBP1 deficiency. Furthermore, mice expressing only RIPK1mRHIM in keratinocytes developed skin inflammation that was abrogated by MLKL or ZBP1 deficiency. Mechanistically, ZBP1 interacted strongly with phosphorylated RIPK3 in cells expressing RIPK1mRHIM, suggesting that the RIPK1 RHIM prevents ZBP1 from binding and activating RIPK3. Collectively, these results show that RIPK1 prevents perinatal death as well as skin inflammation in adult mice by inhibiting ZBP1-induced necroptosis. Furthermore, these findings identify ZBP1 as a critical mediator of inflammation beyond its previously known role in antiviral defence and suggest that ZBP1 might be implicated in the pathogenesis of necroptosis-associated inflammatory diseases.


Asunto(s)
Apoptosis , Glicoproteínas/antagonistas & inhibidores , Glicoproteínas/metabolismo , Inflamación/metabolismo , Necrosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Glicoproteínas/deficiencia , Inflamación/genética , Inflamación/patología , Queratinocitos/metabolismo , Queratinocitos/patología , Ratones , Mutación , Fosforilación , Dominios Proteicos/genética , Proteínas Quinasas/deficiencia , Proteínas Quinasas/metabolismo , Proteínas de Unión al ARN , Proteína Serina-Treonina Quinasas de Interacción con Receptores/química , Proteína Serina-Treonina Quinasas de Interacción con Receptores/deficiencia , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Piel/metabolismo , Piel/patología
14.
Elife ; 32014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25443631

RESUMEN

Linear Ubiquitin chain Assembly Complex (LUBAC) is an E3 ligase complex that generates linear ubiquitin chains and is important for tumour necrosis factor (TNF) signaling activation. Mice lacking Sharpin, a critical subunit of LUBAC, spontaneously develop inflammatory lesions in the skin and other organs. Here we show that TNF receptor 1 (TNFR1)-associated death domain (TRADD)-dependent TNFR1 signaling in epidermal keratinocytes drives skin inflammation in Sharpin-deficient mice. Epidermis-restricted ablation of Fas-associated protein with death domain (FADD) combined with receptor-interacting protein kinase 3 (RIPK3) deficiency fully prevented skin inflammation, while single RIPK3 deficiency only delayed and partly ameliorated lesion development in Sharpin-deficient mice, showing that inflammation is primarily driven by TRADD- and FADD-dependent keratinocyte apoptosis while necroptosis plays a minor role. At the cellular level, Sharpin deficiency sensitized primary murine keratinocytes, human keratinocytes, and mouse embryonic fibroblasts to TNF-induced apoptosis. Depletion of FADD or TRADD in Sharpin-deficient HaCaT cells suppressed TNF-induced apoptosis, indicating the importance of FADD and TRADD in Sharpin-dependent anti-apoptosis signaling in keratinocytes.


Asunto(s)
Apoptosis , Inflamación/patología , Queratinocitos/metabolismo , Queratinocitos/patología , Proteínas del Tejido Nervioso/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Piel/patología , Animales , Apoptosis/efectos de los fármacos , Epidermis/metabolismo , Epidermis/patología , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Células HEK293 , Humanos , Queratinocitos/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Fenotipo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/deficiencia , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/deficiencia , Transducción de Señal/efectos de los fármacos , Proteína de Dominio de Muerte Asociada a Receptor de TNF/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
15.
Nature ; 513(7516): 90-4, 2014 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-25132550

RESUMEN

Necroptosis has emerged as an important pathway of programmed cell death in embryonic development, tissue homeostasis, immunity and inflammation. RIPK1 is implicated in inflammatory and cell death signalling and its kinase activity is believed to drive RIPK3-mediated necroptosis. Here we show that kinase-independent scaffolding RIPK1 functions regulate homeostasis and prevent inflammation in barrier tissues by inhibiting epithelial cell apoptosis and necroptosis. Intestinal epithelial cell (IEC)-specific RIPK1 knockout caused IEC apoptosis, villus atrophy, loss of goblet and Paneth cells and premature death in mice. This pathology developed independently of the microbiota and of MyD88 signalling but was partly rescued by TNFR1 (also known as TNFRSF1A) deficiency. Epithelial FADD ablation inhibited IEC apoptosis and prevented the premature death of mice with IEC-specific RIPK1 knockout. However, mice lacking both RIPK1 and FADD in IECs displayed RIPK3-dependent IEC necroptosis, Paneth cell loss and focal erosive inflammatory lesions in the colon. Moreover, a RIPK1 kinase inactive knock-in delayed but did not prevent inflammation caused by FADD deficiency in IECs or keratinocytes, showing that RIPK3-dependent necroptosis of FADD-deficient epithelial cells only partly requires RIPK1 kinase activity. Epidermis-specific RIPK1 knockout triggered keratinocyte apoptosis and necroptosis and caused severe skin inflammation that was prevented by RIPK3 but not FADD deficiency. These findings revealed that RIPK1 inhibits RIPK3-mediated necroptosis in keratinocytes in vivo and identified necroptosis as a more potent trigger of inflammation compared with apoptosis. Therefore, RIPK1 is a master regulator of epithelial cell survival, homeostasis and inflammation in the intestine and the skin.


Asunto(s)
Apoptosis , Células Epiteliales/citología , Células Epiteliales/patología , Homeostasis , Necrosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Caspasa 8/metabolismo , Supervivencia Celular , Células Epiteliales/metabolismo , Proteína de Dominio de Muerte Asociada a Fas/deficiencia , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Femenino , Inflamación/metabolismo , Inflamación/patología , Mucosa Intestinal/metabolismo , Intestinos/citología , Intestinos/patología , Queratinocitos/metabolismo , Queratinocitos/patología , Masculino , Ratones , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/metabolismo , Células de Paneth/metabolismo , Células de Paneth/patología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/deficiencia , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Receptores Tipo I de Factores de Necrosis Tumoral/deficiencia , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Piel/citología , Piel/metabolismo , Piel/patología
16.
J Invest Dermatol ; 134(10): 2541-2550, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24739902

RESUMEN

Strong inhibition of NF-κB signaling in the epidermis results in spontaneous skin inflammation in mice and men. As there is evidence for linkage between polymorphisms within the NF-κB signaling pathway and human inflammatory skin phenotypes, we asked whether partial functional inhibition of NF-κB signaling in epidermal keratinocytes can modulate clinically relevant skin inflammation. We therefore mutated rela specifically in the epidermis of mice (RelA(E-MUT) mice). These mice show no inflammatory phenotype. Induction of contact allergy, but not croton oil-induced irritant dermatitis, resulted in stronger ear swelling and increased epidermal thickness in RelA(E-MUT) mice. Both contact allergen and croton oil treatment led to increased expression of calgranulins A and B (S100A8/A9) in RelA(E-MUT) mice. Epidermal hyperproliferation in RelA(E-MUT) mice was non-cell autonomous as cultured primary epidermal keratinocytes from RelA(E-MUT) mice showed reduced proliferation compared with controls. These results demonstrate that epidermal RelA specifically regulates delayed-type hypersensitivity-induced skin inflammation. In addition, we describe here an essential but nonspecific function of RelA in the protection of epidermal keratinocytes from apoptosis. Our study identifies functions of NF-κB signaling in the epidermis and corroborates a specific role of epidermal keratinocytes in the regulation of skin inflammation.


Asunto(s)
Apoptosis/fisiología , Dermatitis Alérgica por Contacto/patología , Dermatitis Alérgica por Contacto/fisiopatología , Epidermis/fisiopatología , Piel/fisiopatología , Factor de Transcripción ReIA/fisiología , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Aceite de Crotón/efectos adversos , Aceite de Crotón/farmacología , Dermatitis Alérgica por Contacto/etiología , Modelos Animales de Enfermedad , Epidermis/efectos de los fármacos , Epidermis/patología , Femenino , Técnicas In Vitro , Queratinocitos/efectos de los fármacos , Queratinocitos/patología , Queratinocitos/fisiología , Ratones , Ratones Endogámicos C57BL , Mutación/genética , FN-kappa B/fisiología , Proteínas S100/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Piel/efectos de los fármacos , Piel/patología , Factor de Transcripción ReIA/genética
17.
Immunity ; 39(5): 899-911, 2013 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-24211183

RESUMEN

Psoriasis is a common chronic inflammatory skin disease with a prevalence of about 2% in the Caucasian population. Tumor necrosis factor (TNF) plays an essential role in the pathogenesis of psoriasis, but its mechanism of action remains poorly understood. Here we report that the development of psoriasis-like skin inflammation in mice with epidermis-specific inhibition of the transcription factor NF-κB was triggered by TNF receptor 1 (TNFR1)-dependent upregulation of interleukin-24 (IL-24) and activation of signal transducer and activator of transcription 3 (STAT3) signaling in keratinocytes. IL-24 was strongly expressed in human psoriatic epidermis, and pharmacological inhibition of NF-κB increased IL-24 expression in TNF-stimulated human primary keratinocytes, suggesting that this mechanism is relevant for human psoriasis. Therefore, our results expand current views on psoriasis pathogenesis by revealing a new keratinocyte-intrinsic mechanism that links TNFR1, NF-κB, ERK, IL-24, IL-22R1, and STAT3 signaling to disease initiation.


Asunto(s)
Citocinas/fisiología , Queratinocitos/patología , Psoriasis/etiología , Receptores Tipo I de Factores de Necrosis Tumoral/fisiología , Factor de Necrosis Tumoral alfa/fisiología , Animales , Células Cultivadas , Cruzamientos Genéticos , Citocinas/biosíntesis , Citocinas/genética , Modelos Animales de Enfermedad , Epidermis/patología , Regulación de la Expresión Génica/fisiología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/biosíntesis , Humanos , Quinasa I-kappa B/deficiencia , Quinasa I-kappa B/fisiología , Interleucinas/fisiología , Queratinocitos/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Noqueados , Ratones Transgénicos , FN-kappa B/metabolismo , Psoriasis/patología , Psoriasis/fisiopatología , Especies Reactivas de Oxígeno/metabolismo , Receptores de Interleucina/fisiología , Receptores Tipo I de Factores de Necrosis Tumoral/deficiencia , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Factor de Transcripción STAT3/fisiología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...