Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37446083

RESUMEN

Kyasanur Forest Disease virus (KFDV), a neglected human pathogenic virus, is a Flavivirus that causes severe hemorrhagic fever in humans. KFDV is transmitted to humans by the bite of the hard tick (Haemaphysalis spinigera), which acts as a reservoir of KFDV. The recent expansion of the endemic area of KFDV is of concern and requires the development of new preventive measures against KFDV. Currently, there is no antiviral therapy against KFDV, and the existing vaccine has limited efficacy. To develop a new antiviral therapy against KFDV, we focused on the nonstructural proteins NS2B and NS3 of KFDV, which are responsible for serine protease activity. Viral proteases have shown to be suitable therapeutic targets in the development of antiviral drugs against many diseases. However, success has been limited in flaviviruses, mainly because of the important features of the active site, which is flat and highly charged. In this context, the present study focuses on the dynamics of NS2B and NS3 to identify potential allosteric sites in the NS2B/NS3 protease of KDFV. To our knowledge, there are no reports on the dynamics of NS2B and NS3 in KFDV, and the crystal structure of the NS2B/NS3 protease of KFDV has not yet been solved. Overall, we created the structure of the NS2B/NS3 protease of KFDV using AlphaFold and performed molecular dynamics simulations with and without NS2B cofactor to investigate structural rearrangements due to cofactor binding and to identify alternative allosteric sites. The identified allosteric site is promising due to its geometric and physicochemical properties and druggability and can be used for new drug development. The applicability of the proposed allosteric binding sites was verified for the best-hit molecules from the virtual screening and MD simulations.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Humanos , Virus de la Encefalitis Transmitidos por Garrapatas/metabolismo , Péptido Hidrolasas/metabolismo , Serina Endopeptidasas/metabolismo , Proteínas no Estructurales Virales/metabolismo , Sitio Alostérico , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química
2.
J Biomol Struct Dyn ; 40(24): 13547-13563, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34662258

RESUMEN

Kyasanur forest disease (KFD) is a tick-borne, neglected tropical disease, caused by KFD virus (KFDV) which belongs to Flavivirus (Flaviviridae family). This emerging viral disease is a major threat to humans. Currently, vaccination is the only controlling method against the KFDV, and its effectiveness is very low. An effective control strategy is required to combat this emerging tropical disease using the existing resources. In this regard, in silico drug repurposing method offers an effective strategy to find suitable antiviral drugs against KFDV proteins. Drug repurposing is an effective strategy to identify new use for approved or investigational drugs that are outside the scope of their initial usage and the repurposed drugs have lower risk and higher safety compared to de novo developed drugs, because their toxicity and safety issues are profoundly investigated during the preclinical trials in human/other models. In the present work, we evaluated the effectiveness of the FDA approved and natural compounds against KFDV proteins using in silico molecular docking and molecular simulations. At present, no experimentally solved 3D structures for the KFD viral proteins are available in Protein Data Bank and hence their homology model was developed and used for the analysis. The present analysis successfully developed the reliable homology model of NS3 of KFDV, in terms of geometry and energy contour. Further, in silico molecular docking and molecular dynamics simulations successfully presented four FDA approved drugs and one natural compound against the NS3 homology model of KFDV. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Enfermedad del Bosque de Kyasanur , Humanos , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular , Antivirales/farmacología
3.
Comb Chem High Throughput Screen ; 24(2): 259-268, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32691704

RESUMEN

AIM AND OBJECTIVES: Phytophthora infestans (Mont.) de Bary, the fungal pathogen causes late blight, which results in devastating economic loss among the Solanaceae. The bacillus lipopeptides show the antagonistic activity against the many plant pathogens, among bacillus lipopeptides reported as the antifungal gene. Hence, to understand the in silico antifungal activity, we have selected gene iturin A (AXN89987) produced by Bacillus spp to check the molecular dynamics study with the effector proteins of the P. infestanse. In this concern, known effector proteins of P. infestans were subjected to the protein-protein interaction followed by simulation. MATERIALS AND METHODS: Iturin A gene was amplified using the soil bacterium Bacillus subtilis with gene-specific primers, cloned into pTZ 57R/T vector and confirmed by sequencing. To get better insights, the protein model was developed for Iturin A using Modeller 9.17, using PDB structure of ID 4MRT (Phosphopantetheine transferase Sfp) and 1QR0 (4'-phosphopantetheinyl moiety of coenzyme A) as a template, it shared the identity 72% and expected P-value: 3e-121, respectively. The model quality was assessed using ProSA and PROCHECK programs. RESULTS: The potency of modelled protein against effector proteins of P. infestans were evaluated in silico using the HADDOCK server and the results showed the high affinity of towards the effector protein Host ATG8 (PDB-5L83). Finally, the simulation was performed to the docked conformation of with Host ATG8 to further understand the stability of the complex using the Desmond program. CONCLUSION: Altogether, the protein-protein interaction and simulation study propose a new methodology and to uncover possible antifungal activity of iturin A against effector proteins of P. infestans.


Asunto(s)
Antifúngicos/química , Simulación de Dinámica Molecular , Péptidos Cíclicos/química , Phytophthora infestans/química , Péptidos Cíclicos/genética , Filogenia , Mapas de Interacción de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA