Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 12(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36290251

RESUMEN

Microplastics (MPs), which are particles with a diameter of less than 5 mm, have been extensively studied due to their serious global pollution. Typically, MPs in water originate from terrestrial input. A number of studies have reported the presence of MPs as a stressor in water environments worldwide, and their potential threat to the aquatic animals, affecting the growth, oxidative stress responses, body composition, histopathology, intestinal flora, and immune and reproduction systems. During the plastic degradation process, a large variety of toxic substances are released. MPs have been proposed to be the carriers of toxic chemicals and harmful microorganisms. A study of the literature on MP pollution and stress on the aquatic animals associated with MPs was carried out.

2.
J Nutr Sci ; 9: e41, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32983425

RESUMEN

The present study aimed to investigate nutritional programming of carbohydrate metabolism in Nile tilapia. Early nutritional intervention stimulus was achieved by feeding fry with high-protein/low-carbohydrate (HP/LC) or low-protein/high-carbohydrate (LP/HC) diet since first feeding for 4 weeks, and the effect of nutritional stimulus on carbohydrate and its related metabolism was evaluated through the adult stage. Our findings indicated that at week 1, LP/HC diet-fed fry had lower levels of mRNA for genes coding gluconeogenesis and amino acid catabolism and higher levels of hk2 (P < 0⋅05). As expected, in adult tilapia, although LP/HC diet-fed fish had poorer growth (end of stimulus), the fish showed compensatory growth. There were permanent effects of early high-carbohydrate (HC) intake on several parameters, including (1) modulating hepatic composition, (2) increased muscle glycogen, (3) lower levels of enzymes involved in amino acid catabolism and (4) higher levels of glycolytic enzymes in glycolysis. Finally, HP/LC diet- and LP/HC diet-fed fish were challenged with different dietary carbohydrate levels. Irrespective of challenging diets, the early HC stimulus had significant effects on adult tilapia by (1) promoting utilisation of glucose, which had protein-sparing effects for better growth, (2) inducting lipogenesis and (3) decreasing amino acid catabolism. Taken together, for the first time, we demonstrated that early HC feeding was effective for positive nutritional programming of metabolism in Nile tilapia (an omnivorous fish). It led to the improvement of growth performance in adult fish associated with early feeding, which is linked to a better ability to use glucose, to induce lipogenesis, and to suppress amino acid catabolism.


Asunto(s)
Alimentación Animal/análisis , Dieta/veterinaria , Carbohidratos de la Dieta/metabolismo , Tilapia/crecimiento & desarrollo , Animales , Dieta con Restricción de Proteínas/veterinaria , Egipto , Gluconeogénesis , Ríos , Tilapia/metabolismo
3.
Animals (Basel) ; 10(8)2020 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-32784430

RESUMEN

This study aimed to investigate the effects of DLs, including palm oil (PO; an SFAs), linseed oil (LO; n-3 PUFAs) and soybean oil (SBO; n-6 PUFAs) on the health status of Nile tilapia (Oreochromis niloticus) during adulthood. Three experimental diets incorporating PO, LO or SBO were fed to adult Nile tilapia for a period of 90 days, and haematological and innate immune parameters were evaluated. Proteome analysis was also conducted to evaluate the effects of DLs on plasma proteins. The tested DLs had no significant effects on red blood cell (RBC) count, haematocrit, haemoglobin, and total immunoglobulin and lysozyme activity. Dietary LO led to increased alternative complement 50 activity (ACH50), and proteome analysis revealed that PO and SBO enhanced A2ML, suggesting that different DLs promote immune system via different processes. Dietary LO or SBO increased the expression of several proteins involved in coagulation activity such as KNG1, HRG and FGG. Increased HPX in fish fed with PO suggests that SFAs are utilised in heme lipid-oxidation. Overall, DLs with distinct fatty acids (FAs) affect several parameters corresponding to health status in Nile tilapia, and dietary LO and SBO seemed to strengthen health in this species.

4.
Front Physiol ; 11: 286, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32362832

RESUMEN

The aim of this study was to explore for the first time in omnivorous fish the concept of nutritional programming. A nutritional stimulus was accomplished by microinjecting 2 M glucose into yolk reserves during the alevin stage in Nile tilapia (Oreochromis niloticus). At the molecular level in fry, at 1 week post-injection, glucose stimuli were associated with the up-regulation of genes involved in glycolysis (pklr, hk1, hk2, and pkma), glucose transport (glut4) pathways and down-regulation of genes related to gluconeogenesis (g6pca1, g6pca2, and pck1) and amino acid catabolism (asat, alat) (P < 0.05), demonstrating that the larvae well received the glucose stimulus at a molecular level. Moreover, 20 weeks after glucose injection, early glucose stimuli were always linked to permanent effects in juvenile fish, as reflected by a higher level of glycolytic enzymes [gck, hk1 and hk2 at both mRNA and enzymatic levels and pyruvate kinase (PK) activity]. Finally, the effects of the glucose stimulus history were also examined in fish fed with two different dietary carbohydrate/protein levels (medium-carbohydrate diet, CHO-M; high-carbohydrate diet, CHO-H) in juvenile fish (during weeks 20-24). As expected, the CHO-H diet induced the expression of glycolytic and lipogenic genes (gck, pklr, hk1, hk2, fpkma, fasn, and g6pd) and suppressed the expression of gluconeogenic and amino acid catabolism genes (g6pca1, pck1, pck2, asat, alat, and gdh). Nevertheless, the early glucose stimulus led to persistent up-regulation of glycolytic enzymes (gck, pklr, hk1, and hk2) at both the mRNA and enzyme activity levels and glucose transporter glut4 as well as lower gluconeogenic pck1 gene expression (P < 0.05). More interestingly, the early glucose stimulus was associated with a better growth performance of juvenile fish irrespective of the diets. These permanent changes were associated with DNA hypomethylation in the liver and muscles, suggesting the existence of epigenetic mechanisms at the origin of programming. In conclusion, for the first time in tilapia, early glucose stimuli were found to be clearly associated with a positive metabolic programming effect later in life, improving the growth performance of the fish.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA