Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(27): 14697-14704, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37377151

RESUMEN

Understanding the dynamics of Förster resonance energy transfer (FRET) in fluorophore-functionalized nanomaterials is critical for developing and utilizing such materials in biomedical imaging and optical sensing applications. However, structural dynamics of noncovalently bound systems have a significant effect on the FRET properties affecting their applications in solutions. Here, we study the dynamics of the FRET in atomistic detail by disclosing the structural dynamics of the noncovalently bound azadioxotriangulenium dye (KU) and atomically precise gold nanocluster (Au25(p-MBA)18, p-MBA = para-mercaptobenzoic acid) with a combination of experimental and computational methods. Two distinct subpopulations involved in the energy transfer process between the KU dye and the Au25(p-MBA)18 nanoclusters were resolved by time-resolved fluorescence experiments. Molecular dynamics simulations revealed that KU is bound to the surface of Au25(p-MBA)18 by interacting with the p-MBA ligands as a monomer and as a π-π stacked dimer where the center-to-center distance of the monomers to Au25(p-MBA)18 is separated by ∼0.2 nm, thus explaining the experimental observations. The ratio of the observed energy transfer rates was in reasonably good agreement with the well-known 1/R6 distance dependence for FRET. This work discloses the structural dynamics of the noncovalently bound nanocluster-based system in water solution, providing new insight into the dynamics and energy transfer mechanism of the fluorophore-functionalized gold nanocluster at an atomistic level.

2.
Phys Chem Chem Phys ; 24(48): 29655-29666, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36453100

RESUMEN

Parent, unsubstituted porphycene and its two derivatives: 2,7,12,17-tetra-n-propylporphycene and 2,7,12,17-tetra-t-butylporphycene were substituted at the meso position with amino and nitro groups. These two families of porphycenes were characterized in detail with respect to their spectral, photophysical, and tautomeric properties. Two trans tautomers of similar energies coexist in the ground electronic state, but only one form dominates in the lowest excited singlet state. Absorption, magnetic circular dichroism (MCD), and emission anisotropy combined with quantum-chemical calculations led to the assignment of S1 and S2 transitions in both tautomers. Compared with the parent porphycene, the S1-S2 energy gap significantly increases; for one tautomeric form, the effect is twice as large as for the other. Both amino- and nitroporphycenes emit single fluorescence; previously reported dual emission of aminoporphycenes is attributed to a degradation product. Introduction of bulky t-butyl groups leads to a huge decrease in fluorescence intensity; this effect, arising from the interaction of the meso substituent with the adjacent t-butyl moiety, is particularly strong in the nitro derivative.


Asunto(s)
Análisis Espectral
4.
J Phys Chem B ; 126(25): 4723-4730, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35727678

RESUMEN

The excited-state properties of an amphiphilic porphyrin-fullerene dyad and of its porphyrin analogue adsorbed at the dodecane/water interface are investigated by using surface second-harmonic generation. Although the porphyrin is formally centrosymmetric, the second-harmonic spectra of both compounds are dominated by the intense Soret band of the porphyrin. Polarization-selective measurements and molecular dynamics simulations suggest an angle of about 45° between the donor-acceptor axis and the interfacial plane, with the porphyrin interacting mostly with the nonpolar phase. Time-resolved measurements reveal a marked concentration dependence of the dynamics of both compounds upon Q-band excitation, indicating the occurrence of intermolecular quenching processes. The significant differences in dynamics and spectra between the dyad and the porphyrin analogue are explained by a self-quenching of the excited dyad via an intermolecular electron transfer.

5.
Chimia (Aarau) ; 74(7): 629-630, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32778217

RESUMEN

In response to the global pandemic causing world-wide travel restrictions, the SCS Photochemistry Section decided to organize its annual symposium online. The conference could be attended free of charge without geographical restrictions. This opened up many boarders and resulted in a record high number of registered participants from 24 different countries. Most of the participants were from Switzerland followed by Germany and the United Kingdom. On the day of the event, over 90 participants gathered behind their screens to hear about the latest findings in photochemistry research in Switzerland and abroad. The organizing committee, consisting of the board of the Photochemistry Section, had selected a scientific program including 3 invited lectures, 4 short talks and 10 elevator talks that replaced the poster session. In addition, the general assembly of the Section was held online after the symposium.

6.
Chemistry ; 26(7): 1576-1587, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-31670851

RESUMEN

Complex molecular knots and links are still difficult to synthesize and the properties arising from their topology are mostly unknown. Here, we report on a comparative photophysical study carried out on a family of closely related quinolinium-based knots and links to determine the impact exerted by topology on the molecular backbone. Our results indicate that topology has a negligible influence on the behavior of loosely braided molecules, which mostly behave like their unbraided equivalents. On the other hand, tightly braided molecules display distinct features. Their higher packing density results in a pronounced ability to resist deformation, a significant reduction in the solvent-accessible surface area and favors close-range π-π interactions between the quinolinium units and neighboring aromatics. Finally, the sharp alteration in behavior between loosely and tightly braided molecules sheds light on the factors contributing to braiding tightness.

7.
RSC Adv ; 10(40): 23682-23689, 2020 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-35517311

RESUMEN

Characterization of propyl acetate/butyronitrile (PA/BuCN) mixtures by various spectroscopic techniques is described. The neat solvents have identical viscosities and refractive indices but their dielectric constants differ significantly. Detailed solvatochromic and titration data show that the mixtures do not exhibit specific solute-solvent interactions or significant dielectric enrichment effects. Therefore, the mixtures are ideally suited for investigating the effect of dielectric stabilization on (photo)chemical reactions. Dynamic Stokes shift experiments performed on two push-pull probes demonstrate that the solvation dynamics are significantly decelerated in the mixtures as compared to the neat solvents. Therefore, the mixtures allow for varying both the extent and time scale of the dielectric stabilization in a predictable manner.

8.
Chem Sci ; 11(30): 7963-7971, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34094165

RESUMEN

Excited-state proton transfer (ESPT) to solvent is often explained according to the two-step Eigen-Weller model including a contact ion pair (CIP*) as an intermediate, but general applicability of the model has not been thoroughly examined. Furthermore, examples of the spectral identification of CIP* are scarce. Here, we report on a detailed investigation of ESPT to protic (H2O, D2O, MeOH and EtOH) and aprotic (DMSO) solvents utilizing a broadband fluorescence technique with sub-200 fs time resolution. The time-resolved spectra are decomposed into contributions from the protonated and deprotonated species and a clear signature of CIP* is identified in DMSO and MeOH. Interestingly, the CIP* intermediate is not observable in aqueous environment although the dynamics in all solvents are multi-exponential. Global analysis based on the Eigen-Weller model is satisfactory in all solvents, but the marked mechanistic differences between aqueous and organic solvents cast doubt on the physical validity of the rate constants obtained.

9.
J Am Chem Soc ; 141(48): 19118-19129, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31697078

RESUMEN

The relation between the chemical structure and the mechanical behavior of molecular machines is of paramount importance for a rational design of superior nanomachines. Here, we report on a mechanistic study of a nanometer scale translational movement in two bistable rotaxanes. Both rotaxanes consist of a tetra-amide macrocycle interlocked onto a polyether axle. The macrocycle can shuttle between an initial succinamide station and a 3,6-dihydroxy- or 3,6-di-tert-butyl-1,8-naphthalimide end stations. Translocation of the macrocycle is controlled by a hydrogen-bonding equilibrium between the stations. The equilibrium can be perturbed photochemically by either intermolecular proton or electron transfer depending on the system. To the best of our knowledge, utilization of proton transfer from a conventional photoacid for the operation of a molecular machine is demonstrated for the first time. The shuttling dynamics are monitored by means of UV-vis and IR transient absorption spectroscopies. The polyether axle accelerates the shuttling by ∼70% compared to a structurally similar rotaxane with an all-alkane thread of the same length. The acceleration is attributed to a decrease in activation energy due to an early transition state where the macrocycle partially hydrogen bonds to the ether group of the axle. The dihydroxyrotaxane exhibits the fastest shuttling speed over a nanometer distance (τshuttling ≈ 30 ns) reported to date. The shuttling in this case is proposed to take place via a so-called harpooning mechanism where the transition state involves a folded conformation due to the hydrogen-bonding interactions with the hydroxyl groups of the end station.


Asunto(s)
Hidrógeno/química , Rotaxanos/química , Amidas/química , Enlace de Hidrógeno , Modelos Moleculares , Conformación Molecular , Naftalimidas/química , Protones , Succinatos/química
10.
Chimia (Aarau) ; 73(10): 840, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31645249

RESUMEN

On June 14, 2019, nearly 50 photochemists from all over Switzerland and beyond gathered together at the Haute Ecole d'Ingénierie et d'Architecture in Fribourg (HEIA-FR) for the annual SCS Photochemistry Section meeting to discuss their latest findings in the field. The organizing committee consisting of the board of the SCS Photochemistry Section put together a program consisting of 3 invited talks, 9 oral communications and a poster session with 24 posters to revive this event which, they hope, will take place annually. In addition, the general assembly of the Section was held at the premise during the day.

11.
Chem Sci ; 10(45): 10629-10639, 2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34040711

RESUMEN

Understanding structure-property relationships in multichromophoric molecular architectures is a crucial step in establishing new design principles in organic electronics as well as to fully understand how nature exploits solar energy. Here, we study the excited state dynamics of three bichromophores consisting of two perylene chromophores linked to three different crown-ether backbones, using stationary and ultrafast electronic spectroscopy combined with molecular dynamics simulations. The conformational space available to the bichromophores depends on the structure and geometry of the crown-ether and can be significantly changed upon cation binding, strongly affecting the excited-state dynamics. We show that, depending on the conformational restrictions and the local environment, the nature of the excited state varies greatly, going from an excimer to a symmetry-broken charge separated state. These results can be rationalised in terms of a structure-property relationship that includes the effect of the local environment.

12.
ACS Omega ; 3(2): 1871-1880, 2018 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-29503974

RESUMEN

A spectroscopic study of an organocatalytic Henry reaction between nitroalkanes and aldehydes catalyzed by a quinidine-derived Cinchona alkaloid is described. The binding modes of the reaction substrates are investigated using electronic absorption and fluorescence spectroscopy and further corroborated by nuclear magnetic resonance measurements. Aldehydes are shown to associate with both the 6'-OH group and the basic quinuclidine nitrogen of the catalyst, whereas nitroalkanes do not exhibit a clear binding mode. Reaction progress kinetic analysis reveals that the reaction is first-order in both of the substrates and the catalyst. Second, the reaction proceeds approximately five times faster in the excess of the nitroalkanes than in the excess of the aldehydes, suggesting that binding of the aldehydes results in the inhibition of the catalyst. Aldehydes deactivate the basic quinuclidine site, thus suppressing the deprotonation of the nitroalkanes which is the proposed initial step in the reaction cycle.

13.
J Phys Chem Lett ; 8(18): 4516-4521, 2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28872875

RESUMEN

A thorough understanding of the microscopic mechanism of excited-state proton transfer (ESPT) and the influence of the solvent environment on its dynamics are of great fundamental interest. We present here a detailed investigation of an ESPT to solvent (DMSO) using time-resolved broadband fluorescence and transient absorption spectroscopies. All excited-state species are resolved spectrally and kinetically using a global target analysis based on the two-step Eigen-Weller model. Reversibility of the initial short-range proton transfer producing excited contact ion pairs (CIP*) is observed unambiguously in fluorescence and must be explicitly considered to obtain the individual rate constants. Close inspection of the early dynamics suggests that the relative populations of the protonated form (ROH*) and CIP* are governed by solvent relaxation that influences the relative energies of the excited states. This constitutes a breakdown of the Eigen-Weller model, although the overall agreement between the data and the analysis using classical rate equations is excellent.

14.
Phys Chem Chem Phys ; 19(13): 8815-8825, 2017 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-28294266

RESUMEN

Polar solvation dynamics of six 7-aminocoumarins and 4-aminophthalimide (4AP) are investigated using broadband FLuorescence UP-conversion Spectroscopy (FLUPS) combined with a global analysis based on time-dependent band-shape functions. The solvation dynamics of the coumarins in ethanol exhibit only minor differences but are, however, significantly different from that of 4AP. The band-shape parameters, width and asymmetry, exhibit much larger variation even among the coumarins and are correlated with the amount of excess excitation energy. Differences in the solvation dynamics of 4AP and a selected coumarin, C151, are also observed in dimethyl sulfoxide demonstrating the molecularity of solvation i.e. solvation depends on the solute and does not solely reflect the dynamic properties of the solvent. These differences are attributed to specific solute-solvent interactions due to hydrogen bonding. In a weakly interacting solvent, benzonitrile, the solvation dynamics of 4AP and C151 are nearly identical.

15.
Chem Rev ; 117(16): 10826-10939, 2017 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-27957848

RESUMEN

Ultrafast photochemical reactions in liquids occur on similar or shorter time scales compared to the equilibration of the optically populated excited state. This equilibration involves the relaxation of intramolecular and/or solvent modes. As a consequence, the reaction dynamics are no longer exponential, cannot be quantified by rate constants, and may depend on the excitation wavelength contrary to slower photochemical processes occurring from equilibrated excited states. Such ultrafast photoinduced reactions do no longer obey the Kasha-Vavilov rule. Nonequilibrium effects are also observed in diffusion-controlled intermolecular processes directly after photoexcitation, and their proper description gives access to the intrinsic reaction dynamics that are normally hidden by diffusion. Here we discuss these topics in relation to ultrafast organic photochemical reactions in homogeneous liquids. Discussed reactions include intra- and intermolecular electron- and proton-transfer processes, as well as photochromic reactions occurring with and without bond breaking or bond formation, namely ring-opening reactions and cis-trans isomerizations, respectively.

16.
Chemistry ; 22(43): 15468-15474, 2016 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-27624751

RESUMEN

There is broad interest in molecular encapsulation as such systems can be utilized to stabilize guests, facilitate reactions inside a cavity, or give rise to energy-transfer processes in a confined space. Detailed understanding of encapsulation events is required to facilitate functional molecular encapsulation. In this contribution, it is demonstrated that Ir and Rh-Cp-type metal complexes can be encapsulated inside a self-assembled M6 L4 metallocage only in the presence of an aromatic compound as a second guest. The individual guests are not encapsulated, suggesting that only the pair of guests can fill the void of the cage. Hence, selective co-encapsulation is observed. This principle is demonstrated by co-encapsulation of a variety of combinations of metal complexes and aromatic guests, leading to several ternary complexes. These experiments demonstrate that the efficiency of formation of the ternary complexes depends on the individual components. Moreover, selective exchange of the components is possible, leading to formation of the most favorable complex. Besides the obvious size effect, a charge-transfer interaction may also contribute to this effect. Charge-transfer bands are clearly observed by UV/Vis spectrophotometry. A change in the oxidation potential of the encapsulated electron donor also leads to a shift in the charge-transfer energy bands. As expected, metal complexes with a higher oxidation potential give rise to a higher charge-transfer energy and a larger hypsochromic shift in the UV/Vis spectrum. These subtle energy differences may potentially be used to control the binding and reactivity of the complexes bound in a confined space.

17.
Phys Chem Chem Phys ; 17(32): 20715-24, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26204802

RESUMEN

Complex formation and intermolecular excited-state proton transfer (ESPT) between a dihydroxy-1,8-naphthalimide photoacid and organic bases are investigated in polar aprotic solvents. First, quantum chemical calculations are used to explore the acid-base and spectroscopic properties and to identify energetically favorable complexes. The two hydroxyl groups of the photoacid enable stepwise formation of 1 : 1 and 1 : 2 complexes. Weak bases exhibit only hydrogen-bonding interactions whereas strong bases are able to deprotonate one of the hydroxyl groups resulting in strong negative cooperativity (K1≫ 4K2) in the formation of the 1 : 2 complex. Time-resolved fluorescence studies of the complexes provide strong indications of a three-step dissociation process. The species involved in the model are: a hydrogen-bonded complex, a hydrogen-bonded ion pair, a solvent separated ion pair, and a free ion pair.

18.
J Phys Chem B ; 119(6): 2515-24, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25225779

RESUMEN

The ground- and excited-state acid-base properties of three novel naphthalimide-based "super" photoacids were studied using steady-state and time-resolved spectroscopy. The compounds exhibit pKa = 8.8-8.0 and pKa* = -1.2 to -1.9. The decrease in both ground- and excited-state pKa is achieved by attachment of an electron withdrawing group (sulfonate) on the aromatic system. All compounds are deprotonated upon excitation in alcohols and DMSO. Good correlation is established between the pKa* and the ratio of the neutral and anion emission intensities in a certain solvent. The excited-state intermolecular proton transfer to solvent (H2O and DMSO) is explained by a two-step model. In the first step, short-range proton transfer takes place, resulting in the formation of a contact ion pair. Free ion pairs are formed in the diffusion controlled second step.

19.
Phys Chem Chem Phys ; 14(37): 13019-26, 2012 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-22907041

RESUMEN

The excited-state proton transfer and subsequent intramolecular ion pair formation of a cupreidine-derived Cinchona organocatalyst (BnCPD) were studied in THF-water mixtures using picosecond time-resolved fluorescence together with global analysis. Full spectral and kinetic characterization of all the fluorescent species allowed us to monitor the 3-step process for the ion pair dissociation. In the first step, proton transfer occurs through a water "wire" from the 6-hydroxyquinoline unit (excited-state acid) to the covalently bonded basic quinuclidine moiety, resulting in a hydrogen bonded ion pair. This was confirmed by the observed kinetic isotope effect in the presence of heavy water. In the second step, the formed ions are further solvated by a few solvent molecules, producing the solvent separated ion pair. Finally, a fully solvated ion pair is formed. The 5-exponential global model derived from the reaction scheme describes the experimental data very well.


Asunto(s)
Cinchona/química , Catálisis , Óxido de Deuterio/química , Enlace de Hidrógeno , Iones/química , Cinética , Protones , Quinina/análogos & derivados , Quinina/química , Espectrometría de Fluorescencia , Agua/química
20.
J Am Chem Soc ; 134(3): 1825-39, 2012 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-22148321

RESUMEN

5-(Diphenylphosphanyl)-10,15,20-triarylporphyrins (meso-phosphanylporphyrins) underwent complexations with palladium(II) and platinum(II) salts to afford phosphapalladacycle- and phosphaplatinacycle-fused coplanar porphyrin dimers, respectively, via regioselective peripheral ß-C-H activation of the meso-phosphanylporphyrin ligands. The optical and electrochemical properties of these metal-linked porphyrin dimers as well as their porphyrin monomer/dimer references were investigated by means of steady-state UV-vis absorption/fluorescence spectroscopy, cyclic and differential pulse voltammetry, time-resolved spectroscopy (fluorescence and transient absorption lifetimes and spectra), and magnetic circular dichroism spectroscopy. All the observed data clearly show that the palladium(II) and platinum(II) linkers play crucial roles in the electronic communication between two porphyrin chromophores at the one-electron oxidized state and in the singlet-triplet intersystem-crossing process at the excited state. It has also been revealed that the C-Pt-C linkage makes more significant impacts on these fundamental properties than the C-Pd-C linkage. Furthermore, density functional theory calculations on the metal-linked porphyrin dimers have suggested that the antibonding dπ-pπ orbital interaction between the peripherally attached metal and adjacent pyrrolic ß-carbon atoms destabilizes the highest occupied molecular orbitals of the porphyrin π-systems and accounts for the observed unique absorption properties. On the basis of these experimental and theoretical results, it can be concluded that the linear carbon-metal-carbon linkages weakly but definitely perturb the optical, photophysical, and electrochemical properties of the phosphametallacycle-linked coplanar porphyrin dimers.


Asunto(s)
Carbono/química , Complejos de Coordinación/química , Paladio/química , Platino (Metal)/química , Porfirinas/química , Dimerización , Técnicas Electroquímicas , Modelos Moleculares , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA