Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mycol Med ; 33(4): 101430, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37678114

RESUMEN

INTRODUCTION: Pythiosis is a high-mortality infectious condition in humans and animals. The etiologic agent is Pythium insidiosum. Patients present with an ocular, vascular, cutaneous/subcutaneous, or gastrointestinal infection. Antifungal medication often fails to fight against P. insidiosum. The effective treatment is limited to radical surgery, resulting in organ loss. Fatal outcomes are observed in advanced cases. Pythiosis needs to be studied to discover novel methods for disease control. Genome data of P. insidiosum is publicly available. However, information on P. insidiosum biology and pathogenicity is still limited due to the lack of a cost-effective animal model and molecular tools. MATERIALS AND METHODS: We aimed to develop a high-efficiency protocol for generating P. insidiosum protoplast, and used it to set up an animal model, in vitro drug susceptibility assay, and DNA transformation for this pathogen. RESULTS: P. insidiosum protoplast was successfully generated to establish a feasible pythiosis model in embryonic chicken eggs and an efficient in vitro drug susceptibility assay. DNA transformation is a critical method for gene manipulation necessary for functional genetic studies in pathogens. Attempts to establish a DNA transformation method for P. insidiosum using protoplast were partly successful. Significant work needs to be done for genetically engineering a more robust selection marker to generate stable transformants at increased efficiency. CONCLUSION: This study is the first to report an efficient P. insidiosum protoplast production for clinical and research applications. Such advances are crucial to speeding up the pathogen's biology and pathogenicity exploration.


Asunto(s)
Pitiosis , Pythium , Animales , Humanos , Pythium/genética , Virulencia , Pitiosis/microbiología , Protoplastos , ADN/farmacología , ADN/uso terapéutico
2.
J Fungi (Basel) ; 8(11)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36354883

RESUMEN

The orphan but highly virulent pathogen Pythium insidiosum causes pythiosis in humans and animals. Surgery is a primary treatment aiming to cure but trading off losing affected organs. Antimicrobial drugs show limited efficacy in treating pythiosis. Alternative drugs effective against the pathogen are needed. In-house drug susceptibility tests (i.e., broth dilution, disc diffusion, and radial growth assays) have been established, some of which adapted the standard protocols (i.e., CLSI M38-A2 and CLSI M51) designed for fungi. Hyphal plug, hyphal suspension, and zoospore are inocula commonly used in the drug susceptibility assessment for P. insidiosum. A side-by-side comparison demonstrated that each method had advantages and limitations. Minimum inhibitory and cidal concentrations of a drug varied depending on the selected method. Material availability, user experience, and organism and drug quantities determined which susceptibility assay should be used. We employed the hyphal plug and a combination of broth dilution and radial growth methods to screen and validate the anti-P. insidiosum activities of several previously reported chemicals, including potassium iodide, triamcinolone acetonide, dimethyl sulfoxide, and ethanol, in which data on their anti-P. insidiosum efficacy are limited. We tested each chemical against 29 genetically diverse isolates of P. insidiosum. These chemicals possessed direct antimicrobial effects on the growth of the pathogen in a dose- and time-dependent manner, suggesting their potential application in pythiosis treatment. Future attempts should focus on standardizing these drug susceptibility methods, such as determining susceptibility/resistant breakpoints, so healthcare workers can confidently interpret a result and select an effective drug against P. insidiosum.

3.
J Environ Public Health ; 2022: 4867626, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35242195

RESUMEN

Background: Since its initial appearance in December 2019, coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread globally. Wastewater surveillance has been demonstrated as capable of identifying infection clusters early. The purpose of this study was to investigate a quick and simple method to detect SARS-CoV-2 in wastewater in Thailand during the early stages of the second outbreak wave when the prevalence of the disease and the virus concentration in wastewater were low. Methods: Wastewater samples were collected from a hospital caring for patients with COVID-19 and from 35 markets, two of which were associated with recently reported COVID-19 cases. Then, samples were concentrated by membrane filtering prior to SARS-CoV-2 detection by RT-qPCR. Results: SARS-CoV-2 RNA was detected in the wastewater samples from the hospital; the Ct values for the N, ORF1ab, and S genes progressively increased as the number of patients admitted to the treatment floor decreased. Notably, the ORF1ab and S genes were still detectable in wastewater even when only one patient with COVID-19 remained at the hospital. SARS-CoV-2 RNA was detected in the wastewater samples from fresh market where COVID-19 cases were reported. Conclusions: Our findings suggest that wastewater surveillance for SARS-CoV-2 is sensitive and can detect the virus even in places with a high ambient temperature and relatively low prevalence of COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiología , Humanos , ARN Viral , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales
4.
J Fungi (Basel) ; 7(6)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208304

RESUMEN

Pythiosis, a life-threatening disease caused by Pythium insidiosum, has been increasingly diagnosed worldwide. A recently developed immunochromatographic test (ICT) enables the rapid diagnosis of pythiosis. During the 3-year clinical implementation of ICT in Thailand, we collected the laboratory reports of 38 animals with suspected pythiosis and detected ICT false-positive results in three horses and a dog with basidiobolomycosis. P. insidiosum and Basidiobolus ranarum cause infections with indistinguishable clinical and microscopic features. This study investigated cross-reactive antibodies by probing P. insidiosum and B. ranarum crude extracts and cell-free synthesized I06 protein (encoded in P. insidiosum genome, not other fungi) against a panel of pythiosis, basidiobolomycosis, rabbit anti-I06 peptide, and control sera by Western blot analyses. ICT false-positive results occurred from the cross-reactivity of anti-B. ranarum antibodies to the 15, 50, 60, and 120 kDa proteins of P. insidiosum, not double infections caused by both pathogens. Notably, ICT could help to screen pythiosis, and the positive test requires confirmation by culture or molecular method. The detection specificity of ICT requires improvement. The crude extract containing multispecies antigens needs replacement with a refined P. insidiosum-specific protein. We proposed that the 55 kDa I06 protein is an excellent candidate for developing a more specific serodiagnostic test for pythiosis.

5.
J Fungi (Basel) ; 7(4)2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33804838

RESUMEN

Pythium insidiosum causes pythiosis, a fatal infectious disease of humans and animals worldwide. Prompt diagnosis and treatment are essential to improve the clinical outcome of pythiosis. Diagnosis of P. insidiosum relies on immunological, molecular, and proteomic assays. The main treatment of pythiosis aims to surgically remove all affected tissue to prevent recurrent infection. Due to the marked increase in case reports, pythiosis has become a public health concern. Thailand is an endemic area of human pythiosis. To obtain a complete picture of how the pathogen circulates in the environment, we surveyed the presence of P. insidiosum in urban (Bangkok) and rural areas of Thailand. We employed the hair-baiting technique to screen for P. insidiosum in 500 water samples. Twenty-seven culture-positive samples were identified as P. insidiosum by multiplex PCR, multi-DNA barcode (rDNA, cox1, cox2), and mass spectrometric analyses. These environmental strains of P. insidiosum fell into Clade-II and -III genotypes and exhibited a close phylogenetic/proteomic relationship with Thai clinical strains. Biodiversity of the environmental strains also existed in a local habitat. In conclusion, P. insidiosum is widespread in Thailand. A better understanding of the ecological niche of P. insidiosum could lead to the effective prevention and control of this pathogen.

6.
3 Biotech ; 11(1): 2, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33269186

RESUMEN

The goal of this study was to identify and biochemically characterize a novel hyperthermostable keratinase from microorganisms for feather waste degradation. Here, a hyperthermophilic Geoglobus acetivorans keratinase (GacK) gene was chosen based on a search of a sequence database. The selected GacK gene was synthesized, cloned, and successfully expressed without a signal peptide in the E. coli system. A monomer of approximately 58 kDa was obtained in a soluble form and purified. The recombinant GacK displayed the highest activity at an optimum temperature of 100 °C and a pH of 10. The hyperthermostable GacK enzymatic performance remained high even after incubation in nonionic surfactants and the chelating agent EDTA. The residual and keratinolytic activities of GacK, as determined with azocasein and keratin azure used as substrates, remained significantly greater than 80% at 130 °C for 7 h. The kinetic parameters Km and Vmax for azure keratin were 0.41 mg/ml and 875.14 unit/mg, respectively, while those for azocasein were 1.51 mg/ml and 505.32 unit/mg, respectively. The results suggest that the enzyme is among the most hyperthermostable keratinases. Because of its enzymatic characteristics to degrade keratin azure at high temperatures, GacK may potentially be utilized in future industrial applications.

7.
Int J Infect Dis ; 101: 149-159, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32987181

RESUMEN

OBJECTIVE: Pythium insidiosum causes a life-threatening condition called pythiosis. High morbidity and mortality of pythiosis are consequences of delayed diagnosis. We aimed to develop a loop-mediated isothermal amplification (LAMP) assay for the rapid detection of P. insidiosum for use in remote areas, where pythiosis is prevalent. METHODS: We designed four LAMP primers to amplify the rDNA sequence. A side-by-side comparison evaluated performances of LAMP and the previously-established multiplex PCR (M-PCR), using gDNA samples extracted from colonies of P. insidiosum (n = 28) and other fungi (n = 54), and tissues of animals with (n = 16) or without (n = 13) pythiosis. RESULTS: LAMP demonstrated a 50% shorter assay duration (1.5 h) and a 10-fold lower limit of detection (10-4 ng) than did M-PCR. Based on colony-extracted gDNAs, LAMP and M-PCR correctly reported P. insidiosum in all 28 samples, providing 100% sensitivity. While M-PCR did not amplify all fungal controls (100% specificity), LAMP falsely detected one organism (98% specificity). Based on the clinical samples, LAMP and M-PCR provided an equivalently-high specificity (100%). However, LAMP showed a markedly-higher sensitivity than that of M-PCR (88% vs. 56%). CONCLUSIONS: LAMP is a simple, useful, efficient assay for the detection of P. insidiosum in clinical specimens and pure cultures in resource-limited laboratories.


Asunto(s)
Enfermedades de los Perros/diagnóstico , Enfermedades de los Caballos/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Pitiosis/diagnóstico , Pythium/genética , Animales , ADN Ribosómico/genética , Enfermedades de los Perros/microbiología , Perros , Enfermedades de los Caballos/microbiología , Caballos , Humanos , Pitiosis/microbiología , Pythium/clasificación , Pythium/aislamiento & purificación , Análisis de Secuencia de ADN
8.
Heliyon ; 6(6): e04237, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32596527

RESUMEN

Pythiosis is a deadly infectious disease of humans and animals living in tropical and subtropical countries. The causative agent is the oomycete Pythium insidiosum. Treatment of pythiosis is challenging. The use of antimicrobial agents usually fails in the treatment of pythiosis. Many patients undergo surgical removal of an infected organ (i.e., eye, arm, and leg). The immunotherapeutic vaccine, prepared from the crude extract of P. insidiosum, shows limited efficacy against pythiosis. The fatal outcome occurs in patients with advanced disease. There are urgent needs for an effective therapeutic modality for pythiosis. Recently, the exo-1,3-ß-glucanase (Exo1) has been identified as a conserve immunoreactive protein of P. insidiosum. Exo1 was predicted to reside at the cell membrane and hydrolyze cell wall ß-glucan during cell growth. An Exo1 ortholog is absent in the human genome, making it an appealing target for drug or vaccine development. We attempted to clone and express the codon-optimized exo1 gene of P. insidiosum in E. coli. To solve the inclusion body formation, expression and purification of Exo1 were achievable in the denaturing condition using SDS- and urea-based buffers. Exo1 lacked hydrolytic activity due to the absence of proper protein folding and post-translational modifications. ELISA and Western blot analyses demonstrated the immunoreactivity of Exo1 against pythiosis sera. In conclusion, we successfully expressed and purified the immunoreactive Exo1 protein of P. insidiosum. The recombinant Exo1 can be produced at an unlimited amount and could serve as an extra protein to enhance the effectiveness of the current form of the vaccine against pythiosis.

9.
mSystems ; 5(3)2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32398276

RESUMEN

Protein production relies on time-consuming genetic engineering and in vivo expression, which is a bottleneck for functional studies in the postgenomic era. Cell-free protein synthesis (CFPS) overcomes the limitation of in vivo protein biosynthesis by processing in vitro transcription and translation of multiple genes to proteins within hours. We employed an automated CFPS to simultaneously synthesize proteins from 24 genes of the oomycete Pythium insidiosum (which causes the life-threatening disease pythiosis) and screen for a diagnostic and therapeutic target. CFPS successfully synthesized 18 proteins (∼75% success rate). One protein, namely, I06, was explicitly recognized by all pythiosis sera, but not control sera, tested. Py. insidiosum secreted a significant amount of I06. The protein architecture of I06 is compatible with the oligopeptide elicitor (OPEL) of the phylogenetically related plant-pathogenic oomycete Phytophthora parasitica The OPEL-like I06 protein of Py. insidiosum can stimulate host antibody responses, similar to the P. parasitica OPEL that triggers plant defense mechanisms. OPEL-like I06 homologs are present only in the oomycetes. Py. insidiosum contains two OPEL-like I06 homologs, but only one of the two homologs was expressed during hyphal growth. Twenty-nine homologs derived from 15 oomycetes can be phylogenetically divided into two groups. The OPEL-like genes might occur in the common ancestor, before independently undergoing gene gain and loss during the oomycete speciation. In conclusion, CFPS offers a fast in vitro protein synthesis. CFPS simultaneously generated multiple proteins of Py. insidiosum and facilitated the identification of the secretory OPEL-like I06 protein, a potential target for the development of a control measure against the pathogen.IMPORTANCE Technical limitations of conventional biotechnological methods (i.e., genetic engineering and protein synthesis) prevent extensive functional studies of the massive amounts of genetic information available today. We employed a cell-free protein synthesis system to rapidly and simultaneously generate multiple proteins from genetic codes of the oomycete Pythium insidiosum, which causes the life-threatening disease called pythiosis, in humans and animals worldwide. We aimed to screen for potential diagnostic and therapeutic protein targets of this pathogen. Eighteen proteins were synthesized. Of the 18 proteins, one was a secreted immunoreactive protein, called I06, that triggered host immunity and was recognized explicitly by all tested sera from pythiosis patients. It is one of the OPEL proteins; these proteins are present only in the unique group of microorganisms called oomycetes. Here, we demonstrated that cell-free protein synthesis was useful for the production of multiple proteins to facilitate functional studies and identify a potential target for diagnosis and treatment of pythiosis.

10.
BMC Res Notes ; 13(1): 135, 2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32143691

RESUMEN

OBJECTIVES: Pythiosis is a deadly infectious disease caused by Pythium insidiosum. Reports of both human and animal pythiosis are on the rise worldwide. Prognosis of the pythiosis patients relies on early diagnosis and prompt treatment. There are needs for an immunodiagnostic test that can detect the disease in both humans and animals. This study aims at reporting an optimized protocol for the development of a protein A/G-based enzyme-linked immunosorbent assay (ELISA) for the detection of anti-P. insidiosum antibody in multiple host species. RESULTS: A total of 25 pythiosis and 50 control sera, obtained from humans, horses, dogs, cats, and cows, were recruited for the assay development. With a proper ELISA cutoff point, all pythiosis sera can ultimately be distinguished from the control sera. The successfully-developed protein A/G-based ELISA can detect the anti-P. insidiosum antibodies in serum samples of both humans and animals. It is a versatile, feasible-to-develop, and functional immunodiagnostic assay for pythiosis.


Asunto(s)
Anticuerpos/sangre , Proteínas Bacterianas/química , Ensayo de Inmunoadsorción Enzimática/métodos , Pitiosis/diagnóstico , Pythium/aislamiento & purificación , Proteína Estafilocócica A/química , Animales , Proteínas Bacterianas/inmunología , Estudios de Casos y Controles , Gatos , Bovinos , Perros , Diagnóstico Precoz , Ensayo de Inmunoadsorción Enzimática/normas , Caballos , Humanos , Sueros Inmunes/química , Pitiosis/sangre , Pitiosis/inmunología , Pitiosis/parasitología , Pythium/inmunología , Sensibilidad y Especificidad , Proteína Estafilocócica A/inmunología
11.
Artículo en Inglés | MEDLINE | ID: mdl-31138572

RESUMEN

Pythium insidiosum is an oomycete microorganism that causes a life-threatening infectious disease, called pythiosis, in humans and animals. The disease has been increasingly reported worldwide. Conventional antifungal drugs are ineffective against P. insidiosum Treatment of pythiosis requires the extensive removal of infected tissue (i.e., eye and leg), but inadequate surgery and recurrent infection often occur. A more effective treatment is needed for pythiosis patients. Drug repurposing is a promising strategy for the identification of a U.S. Food and Drug Administration-approved drug for the control of P. insidiosum Disulfiram has been approved to treat alcoholism, but it exhibits antimicrobial activity against various pathogens. In this study, we explored whether disulfiram possesses an anti-P. insidiosum activity. A total of 27 P. insidiosum strains, isolated from various hosts and geographic areas, were susceptible to disulfiram in a dose-dependent manner. The MIC range of disulfiram against P. insidiosum (8 to 32 mg/liter) was in line with that of other pathogens. Proteogenomic analysis indicated that several potential targets of disulfiram (i.e., aldehyde dehydrogenase and urease) were present in P. insidiosum By homology modeling and molecular docking, disulfiram can bind the putative aldehyde dehydrogenase and urease of P. insidiosum at low energies (i.e., -6.1 and -4.0 Kcal/mol, respectively). Disulfiram diminished the biochemical activities of these enzymes. In conclusion, disulfiram can inhibit the growth of many pathogenic microorganisms, including P. insidiosum The drug can bind and inactivate multiple proteins of P. insidiosum, which may contribute to its broad antimicrobial property. Drug repurposing of disulfiram could be a new treatment option for pythiosis.


Asunto(s)
Inhibidores del Acetaldehído Deshidrogenasa/farmacología , Aldehído Deshidrogenasa/antagonistas & inhibidores , Disulfiram/farmacología , Oomicetos/efectos de los fármacos , Pythium/efectos de los fármacos , Ureasa/antagonistas & inhibidores , Animales , Antifúngicos/farmacología , Humanos , Simulación del Acoplamiento Molecular/métodos , Pitiosis/tratamiento farmacológico , Pitiosis/microbiología
12.
Med Mycol ; 57(3): 284-290, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29846667

RESUMEN

Pythiosis is a life-threatening disease of humans and other animals in tropical and subtropical countries. The causative agent is Pythium insidiosum. Diagnosis of pythiosis can be missed due to the lack of awareness in the medical community. Treatment of the disease is difficult and challenging. Most pythiosis patients end up losing an infected organ (i.e., eye or leg), and many die from uncontrolled infection. In 2006, the largest series of human cases of pythiosis (∼100) was reported from Thailand, highlighting the nationwide distribution of this high morbidity and mortality disease. The global distribution of P. insidiosum is demonstrated by its detection in several regions around the world. Epidemiological studies of exposure to the pathogen in the general population are lacking. Here we used a combination of two established diagnostic tools (i.e., ELISA and Western blot) to explore the seroprevalence of anti-P. insidiosum antibodies in 2641 individuals, aged ≥ 15 years, sampled from Thailand. Four individuals were identified with anti-P. insidiosum antibodies in their sera, thus providing a statistically-estimated prevalence of ∼7 in 10000 or ∼32000 in the entire Thai population. The detection of the anti-P. insidiosum antibodies in healthy people with no history of pythiosis suggests that subclinical infections can occur. Taking into account the seroprevalence of anti-P. insidiosum antibodies, the global distribution of the organism, the nationwide distribution of patients, and the high morbidity and mortality of the disease, awareness of pythiosis should be raised as a public health concern in Thailand and other countries.


Asunto(s)
Anticuerpos Antifúngicos/sangre , Pitiosis/epidemiología , Pitiosis/inmunología , Pythium/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Infecciones Asintomáticas/epidemiología , Western Blotting , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Persona de Mediana Edad , Filogenia , Pitiosis/diagnóstico , Pythium/genética , Análisis de Secuencia de ADN , Estudios Seroepidemiológicos , Tailandia/epidemiología , Adulto Joven
13.
Int J Infect Dis ; 77: 61-67, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30218817

RESUMEN

OBJECTIVE: Pythiosis is a life-threatening infectious disease caused by the oomycete Pythium insidiosum. The disease has been increasingly reported worldwide. Most patients with pythiosis undergo surgical removal of an infected organ. Early diagnosis contributes to better prognosis of pythiosis patients. Here, we assessed the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for identification and biotyping of P. insidiosum. METHODS: A comprehensive set of mass spectra of P. insidiosum was generated to evaluate MALDI-TOF MS for identification and biotyping of P. insidiosum. RESULTS: MALDI-TOF MS accurately identified all 13 P. insidiosum strains tested, at the species level. Mass spectra of P. insidiosum did not match any other microorganisms, including fungi (i.e., Aspergillus species, Fusarium species, and fungal species of the class Zygomycetes), which have similar microscopic morphologies with this oomycete. MALDI-TOF MS- and rDNA sequence-based biotyping methods consistently classified P. insidiosum into three groups: Clade-I (American strains), II (Asian and Australian strains), and III (mostly Thai strains). CONCLUSIONS: MALDI-TOF MS has been successfully used for identification and biotyping of P. insidiosum. The obtained mass spectral database allows clinical microbiology laboratories, well-equipped with a MALDI-TOF mass spectrometer, to conveniently identify P. insidiosum, without requiring any pathogen-specific reagents (i.e., antigen, antibody or primers).


Asunto(s)
Pitiosis/diagnóstico , Pythium/clasificación , Pythium/aislamiento & purificación , ADN Ribosómico/genética , ADN Ribosómico/aislamiento & purificación , Técnicas de Genotipaje , Humanos , Filogenia , Análisis de Secuencia de ADN , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
14.
PeerJ ; 6: e4821, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29888122

RESUMEN

The oomycete microorganism, Pythium insidiosum, causes the life-threatening infectious condition, pythiosis, in humans and animals worldwide. Affected individuals typically endure surgical removal of the infected organ(s). Detection of P. insidiosum by the established microbiological, immunological, or molecular methods is not feasible in non-reference laboratories, resulting in delayed diagnosis. Biochemical assays have been used to characterize P. insidiosum, some of which could aid in the clinical identification of this organism. Although hydrolysis of maltose and sucrose has been proposed as the key biochemical feature useful in discriminating P. insidiosum from other oomycetes and fungi, this technique requires a more rigorous evaluation involving a wider selection of P. insidiosum strains. Here, we evaluated 10 routinely available biochemical assays for characterization of 26 P. insidiosum strains, isolated from different hosts and geographic origins. Initial assessment revealed diverse biochemical characteristics across the P. insidiosum strains tested. Failure to hydrolyze sugars is observed, especially in slow-growing strains. Because hydrolysis of maltose and sucrose varied among different strains, use of the biochemical assays for identification of P. insidiosum should be cautioned. The ability of P. insidiosum to hydrolyze urea is our focus, because this metabolic process relies on the enzyme urease, an important virulence factor of other pathogens. The ability to hydrolyze urea varied among P. insidiosum strains and was not associated with growth rates. Genome analyses demonstrated that urease- and urease accessory protein-encoding genes are present in both urea-hydrolyzing and non-urea-hydrolyzing strains of P. insidiosum. Urease genes are phylogenetically conserved in P. insidiosum and related oomycetes, while the presence of urease accessory protein-encoding genes is markedly diverse in these organisms. In summary, we dissected biochemical characteristics and drew new insights into clinical identification and urease-related evolution of P. insidiosum.

15.
Sci Rep ; 8(1): 4135, 2018 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-29515152

RESUMEN

Pythium insidiosum is a human-pathogenic oomycete. Many patients infected with it lose organs or die. Toward the goal of developing improved treatment options, we want to understand how Py. insidiosum has evolved to become a successful human pathogen. Our approach here involved the use of comparative genomic and other analyses to identify genes with possible functions in the pathogenicity of Py. insidiosum. We generated an Oomycete Gene Table and used it to explore the genome contents and phylogenomic relationships of Py. insidiosum and 19 other oomycetes. Initial sequence analyses showed that Py. insidiosum is closely related to Pythium species that are not pathogenic to humans. Our analyses also indicated that the organism harbours secreted and adhesin-like proteins, which are absent from related species. Putative virulence proteins were identified by comparison to a set of known virulence genes. Among them is the urease Ure1, which is absent from humans and thus a potential diagnostic and therapeutic target. We used mass spectrometric data to successfully validate the expression of 30% of 14,962 predicted proteins and identify 15 body temperature (37 °C)-dependent proteins of Py. insidiosum. This work begins to unravel the determinants of pathogenicity of Py. insidiosum.


Asunto(s)
Regulación de la Expresión Génica , Filogenia , Pitiosis , Pythium , Factores de Virulencia , Humanos , Espectrometría de Masas , Pitiosis/genética , Pitiosis/metabolismo , Pythium/genética , Pythium/metabolismo , Factores de Virulencia/biosíntesis , Factores de Virulencia/genética
16.
Infect Genet Evol ; 54: 429-436, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28826756

RESUMEN

Pythium insidiosum causes a life-threatening infectious disease, called pythiosis, in humans and animals worldwide. Diagnosis of pythiosis is difficult and often delayed. Surgical removal of infected tissue is the main treatment option. Disabilities and death are common outcomes for pythiosis patients. Reports of Py. insidiosum infections are rising. While it would be useful for clinical, epidemiological, and microbiological studies, information on genetic variation in Py. insidiosum strains is limited. This limitation is, at least in part, due to the cost and time-requirements of DNA sequencing procedures. rDNA-sequence-based phylogenetic analyses categorize Py. insidiosum into three groups, in relation to geographic distribution: Clade-I (American strains), Clade-II (American, Asian, and Australian strains), and Clade-III (Thai and American strains). In rDNA sequence analyses, we observed single nucleotide polymorphisms (SNP) that were associated with the phylogenetic clades of Py. insidiosum. In this study, we aim to develop a multiplex PCR assay, targeting the identified SNPs, for rapid genotyping of Py. insidiosum. We also aim to assess diagnostic efficiency of the assay for identification of Py. insidiosum. Fifty-three isolates of Py. insidiosum from humans (n=35), animals (n=14), and the environment (n=4), and 22 negative-control fungi were recruited for assay evaluation. Based on the pattern of amplicons, the multiplex PCR correctly assigned phylogenetic clades in 98% of the Py. insidiosum isolates tested. The assay exhibited 100% sensitivity and specificity for identification of Py. insidiosum. The assay successfully identified and genotyped the first proven isolate of Py. insidiosum from an animal with pythiosis in Thailand. In conclusion, the multiplex PCR provided accurate, sensitive and specific results for identifying and genotyping Py. insidiosum. Thus, this multiplex-PCR assay could be a simple, rapid, and cost-effective alternative to DNA sequencing for the identification and genotyping of Py. insidiosum.


Asunto(s)
Culicidae/parasitología , ADN Ribosómico/genética , Caballos/parasitología , Polimorfismo de Nucleótido Simple , Pitiosis/parasitología , Pythium/genética , Américas , Animales , Asia , Australia , Técnicas de Genotipaje , Humanos , Reacción en Cadena de la Polimerasa Multiplex , Filogenia , Filogeografía , Pythium/clasificación , Pythium/aislamiento & purificación
17.
Med Mycol ; 54(6): 641-7, 2016 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-27118800

RESUMEN

Pythiosis is a life-threatening infectious disease of both humans and animals living in Asia, Americas, Africa, and parts of Australia and New Zealand. The etiologic pathogen is the fungus-like organism Pythium insidiosum The disease has high mortality and morbidity rates. Use of antifungal drugs are ineffective against P. insidiosum, leaving radical surgery the main treatment option. Prompt treatment leads to better prognosis of affected individuals, and could be achieved by early and accurate diagnosis. Since pythiosis has been increasingly reported worldwide, there is a need for a rapid, user-friendly, and efficient test that facilitates the diagnosis of the disease. This study aims to develop an immunochromatographic test (ICT), using the bacterial protein A/G, to detect anti-P. insidiosum IgGs in humans and animals, and compare its diagnostic performance with the established ELISA. Eighty-five serum samples from 28 patients, 24 dogs, 12 horses, 12 rabbits, and 9 cattle with pythiosis, and 143 serum samples from 80 human and 63 animal subjects in a healthy condition, with thalassemia, or with other fungal infections, were recruited for assay evaluation. Detection specificities of ELISA and ICT were 100.0%. While the detection sensitivity of ELISA was 98.8%, that of ICT was 90.6%. Most pythiosis sera, that were falsely read negative by ICT, were weakly positive by ELISA. In conclusion, a protein A/G-based ICT is a rapid, user-friendly, and efficient assay for serodiagnosis of pythiosis in humans and animals. Compared to ELISA, ICT has an equivalent detection specificity and a slightly lower detection sensitivity.


Asunto(s)
Anticuerpos Antifúngicos/sangre , Cromatografía de Afinidad/métodos , Pitiosis/diagnóstico , Pythium/inmunología , Pruebas Serológicas/métodos , Américas , Animales , Asia , Donantes de Sangre , Bovinos , Perros , Ensayo de Inmunoadsorción Enzimática , Caballos , Humanos , Inmunoglobulina G/sangre , Conejos , Sensibilidad y Especificidad
18.
J Med Assoc Thai ; 97(3): 342-8, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25123015

RESUMEN

BACKGROUND: The fungus-like organism Pythium insidiosum is the causative agent of a life-threatening tropical infectious disease, pythiosis, which has high rates of morbidity and mortality. A lack of reliable diagnostic tools and effective treatments for pythiosis presents a major challenge to healthcare professionals. Unfortunately, surgical removal of infected organs remains the default treatment for pythiosis. P. insidiosum is an understudied organism. In-depth study of the pathogen at the molecular level could lead to better means of infection control High quality genomic DNA (gDNA) is needed for molecular biology-based research and application development, such as: PCR-assisted diagnosis, population studies, phylogenetic analysis, and molecular genetics assays. OBJECTIVE: To evaluate quality and quantity of the P. insidiosum gDNA extracted by three separate protocols intended for fungal gDNA preparation. MATERIAL AND METHOD: Seven P. insidiosum isolates were subjected to gDNA extraction by using conventional-extraction, rapid-extraction, and salt-extraction protocols. RESULTS: The conventional protocol offered the best gDNA in terms of quality and quantity, and could be scaled up. The rapid-extraction protocol had a short turnaround time, but the quality and quantity of the gDNA obtained were limited. The salt-extraction protocol was simple, rapid, and efficient, making it appealing for high throughput preparation of small-scale gDNA samples. CONCLUSION: Compared to rapid-extraction protocol, both conventional-extraction and salt-extraction protocols provided a better quality and quantity of gDNA, suitable for molecular studies of P. insidiosum. In contrast to the other two methods, the salt-extraction protocol does not require the use of hazardous and expensive materials such as phenol, chloroform, or liquid nitrogen.


Asunto(s)
ADN/aislamiento & purificación , Pythium/genética , Animales , Genoma , Humanos , Reacción en Cadena de la Polimerasa/métodos , Pitiosis/genética , Pythium/clasificación , Pythium/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...