Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurotoxicology ; 82: 130-136, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33290784

RESUMEN

Cannabidiol, approved for treatment of pediatric refractory epilepsy, has anti-seizure effects in various animal seizure models. Chemical warfare nerve agents, including soman, are organophosphorus chemicals that can induce seizure and death if untreated or if treatment is delayed. Our objective was to evaluate whether cannabidiol would ameliorate soman-induced toxicity using a mouse model that similar to humans lacks plasma carboxylesterase. In the present study, adult female plasma carboxylesterase knockout (Es1-/-) mice were pre-treated with cannabidiol (20-150 mg/kg) or vehicle 1 h prior to exposure to a seizure-inducing dose of soman and evaluated for survival and seizure activity. The muscarinic antagonist atropine sulfate and the oxime HI-6 were administered at 1 min after exposure, and the benzodiazepine midazolam was administered at 30 min after seizure onset. Cannabidiol (150 mg/kg) pre-treatment led to a robust increase in survival rate and attenuated body weight loss in soman-exposed mice treated with medical countermeasures, compared to mice pre-treated with vehicle. In addition, mice pretreated with cannabidiol (150 mg/kg) had a modest reduction in seizure severity after midazolam treatment compared to vehicle-pretreated. These findings of improved outcome with cannabidiol administration in a severe seizure model of soman exposure provide additional pre-clinical support for the benefits of cannabidiol against exposure to seizure-inducing chemical agents and suggest cannabidiol may augment the anti-seizure effects of midazolam.


Asunto(s)
Anticonvulsivantes/farmacología , Cannabidiol/farmacología , Carboxilesterasa/metabolismo , Midazolam/farmacología , Convulsiones/inducido químicamente , Soman/toxicidad , Animales , Electroencefalografía/métodos , Femenino , Ratones , Ratones Noqueados , Convulsiones/mortalidad , Convulsiones/prevención & control , Análisis de Supervivencia
2.
Epilepsy Behav ; 111: 107229, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32575012

RESUMEN

Delayed treatment of cholinergic seizure results in benzodiazepine-refractory status epilepticus (SE) that is thought, at least in part, to result from maladaptive trafficking of N-methyl-d-aspartate (NMDA) and gamma-aminobutyric acid type A (GABAA) receptors, the effects of which may be ameliorated by combination therapy with the NMDA receptor antagonist ketamine. Our objective was to establish whether ketamine and midazolam dual therapy would improve outcome over midazolam monotherapy following soman (GD) exposure when evaluated in a mouse model that, similar to humans, lacks plasma carboxylesterase, greatly reducing endogenous scavenging of GD. In the current study, continuous cortical electroencephalographic activity was evaluated in male and female plasma carboxylesterase knockout mice exposed to a seizure-inducing dose of GD and treated with midazolam or with midazolam and ketamine combination at 40 min after seizure onset. Ketamine and midazolam combination reduced GD-induced lethality, seizure severity, and the number of mice that developed spontaneous recurrent seizure (SRS) compared with midazolam monotherapy. In addition, ketamine-midazolam combination treatment reduced GD-induced neuronal degeneration and microgliosis. These results support that combination of antiepileptic drug therapies aimed at correcting the maladaptive GABAA and NMDA receptor trafficking reduces the detrimental effects of GD exposure. Ketamine may be a beneficial adjunct to midazolam in reducing the epileptogenesis and neuroanatomical damage that follows nerve agent exposure and pharmacoresistant SE.


Asunto(s)
Encéfalo/patología , Carboxilesterasa/sangre , Ketamina/administración & dosificación , Midazolam/administración & dosificación , Soman/toxicidad , Estado Epiléptico/sangre , Animales , Anticonvulsivantes/administración & dosificación , Encéfalo/efectos de los fármacos , Carboxilesterasa/deficiencia , Quimioterapia Combinada , Electroencefalografía/métodos , Femenino , Masculino , Ratones , Ratones Noqueados , Convulsiones/sangre , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Estado Epiléptico/inducido químicamente , Estado Epiléptico/tratamiento farmacológico
3.
Ann N Y Acad Sci ; 1479(1): 94-107, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32027397

RESUMEN

Chemical warfare nerve agent exposure leads to status epilepticus that may progress to epileptogenesis and severe brain pathology when benzodiazepine treatment is delayed. We evaluated the dose-response effects of delayed midazolam (MDZ) on toxicity induced by soman (GD) in the plasma carboxylesterase knockout (Es1-/- ) mouse, which, similar to humans, lacks plasma carboxylesterase. Initially, we compared the median lethal dose (LD50 ) of GD exposure in female Es1-/- mice across estrous with male mice and observed a greater LD50 during estrus compared with proestrus or with males. Subsequently, male and female GD-exposed Es1-/- mice treated with a dose range of MDZ 40 min after seizure onset were evaluated for survivability, seizure activity, and epileptogenesis. GD-induced neuronal loss and microglial activation were evaluated 2 weeks after exposure. Similar to our previous observations in rats, delayed treatment with MDZ dose-dependently increased survival and reduced seizure severity in GD-exposed mice, but was unable to prevent epileptogenesis, neuronal loss, or gliosis. These results suggest that MDZ is beneficial against GD exposure, even when treatment is delayed, but that adjunct therapies to enhance protection need to be identified. The Es1-/- mouse GD exposure model may be useful to screen for improved medical countermeasures against nerve agent exposure.


Asunto(s)
Carboxilesterasa/deficiencia , Midazolam/farmacología , Agentes Nerviosos/toxicidad , Caracteres Sexuales , Soman/toxicidad , Estado Epiléptico , Animales , Relación Dosis-Respuesta a Droga , Femenino , Masculino , Ratones , Ratones Noqueados , Estado Epiléptico/inducido químicamente , Estado Epiléptico/enzimología , Estado Epiléptico/genética , Estado Epiléptico/prevención & control
4.
Epilepsia ; 59(12): 2206-2218, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30368799

RESUMEN

OBJECTIVE: Exposure to chemical warfare nerve agents (CWNAs), such as soman (GD), can induce status epilepticus (SE) that becomes refractory to benzodiazepines when treatment is delayed, leading to increased risk of epileptogenesis, severe neuropathology, and long-term behavioral and cognitive deficits. Rodent models, widely used to evaluate novel medical countermeasures (MCMs) against CWNA exposure, normally express plasma carboxylesterase, an enzyme involved in the metabolism of certain organophosphorus compounds. To better predict the efficacy of novel MCMs against CWNA exposure in human casualties, it is crucial to use appropriate animal models that mirror the human condition. We present a comprehensive characterization of the seizurogenic, epileptogenic, and neuropathologic effects of GD exposure with delayed anticonvulsant treatment in the plasma carboxylesterase knockout (ES1-/-) mouse. METHODS: Electroencephalography (EEG) electrode-implanted ES1-/- and wild-type (C57BL/6) mice were exposed to various seizure-inducing doses of GD, treated with atropine sulfate and the oxime HI-6 at 1 minute after exposure, and administered midazolam at 15-30 minutes following the onset of seizure activity. The latency of acute seizure onset and spontaneous recurrent seizures (SRS) was assessed, as were changes in EEG power spectra. At 2 weeks after GD exposure, neurodegeneration and neuroinflammation were assessed. RESULTS: GD-exposed ES1-/- mice displayed a dose-dependent response in seizure severity. Only ES1-/- mice exposed to the highest tested dose of GD developed SE, subchronic alterations in EEG power spectra, and SRS. Degree of neuronal cell loss and neuroinflammation were dose-dependent; no significant neuropathology was observed in C57BL/6 mice or ES1-/- mice exposed to lower GD doses. SIGNIFICANCE: The US Food and Drug Administration (FDA) animal rule requires the use of relevant animal models for the advancement of MCMs against CWNAs. We present evidence that argues for the use of the ES1-/- mouse model to screen anticonvulsant, antiepileptic, and/or neuroprotective drugs against GD-induced toxicity, as well as to identify mechanisms of GD-induced epileptogenesis.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Carboxilesterasa/genética , Sustancias para la Guerra Química , Midazolam/uso terapéutico , Soman , Estado Epiléptico/inducido químicamente , Estado Epiléptico/tratamiento farmacológico , Animales , Recuento de Células , Reactivadores de la Colinesterasa/uso terapéutico , Electroencefalografía , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Degeneración Nerviosa/patología , Convulsiones/fisiopatología , Estado Epiléptico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...