Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Infect Dis ; 10(6): 1990-2001, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38815059

RESUMEN

Conserved molecular signatures in multidrug-resistant Salmonella typhi can serve as novel therapeutic targets for mitigation of infection. In this regard, we present the S. typhi cell division activator protein (StCAP) as a conserved target across S. typhi variants. From in silico and fluorimetric assessments, we found that StCAP is a DNA-binding protein. Replacement of the identified DNA-interacting residue Arg34 of StCAP with Ala34 showed a dramatic (15-fold) increase in Kd value compared to the wild type (Kd 546 nm) as well as a decrease in thermal stability (10 °C shift). Out of the two screened molecules against the DNA-binding pocket of StCAP, eltrombopag, and nilotinib, the former displayed better binding. Eltrombopag inhibited the stand-alone S. typhi culture with an IC50 of 38 µM. The effect was much more pronounced on THP-1-derived macrophages (T1Mac) infected with S. typhi where colony formation was severely hindered with IC50 reduced further to 10 µM. Apoptotic protease activating factor1 (Apaf1), a key molecule for intrinsic apoptosis, was identified as an StCAP-interacting partner by pull-down assay against T1Mac. Further, StCAP-transfected T1Mac showed a significant increase in LC3 II (autophagy marker) expression and downregulation of caspase 3 protein. From these experiments, we conclude that StCAP provides a crucial survival advantage to S. typhi during infection, thereby making it a potent alternative therapeutic target.


Asunto(s)
Proteínas Bacterianas , Salmonella typhi , Salmonella typhi/efectos de los fármacos , Salmonella typhi/genética , Salmonella typhi/patogenicidad , Humanos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Apoptosis/efectos de los fármacos , Macrófagos/microbiología , Macrófagos/efectos de los fármacos , Células THP-1 , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Autofagia/efectos de los fármacos , Fiebre Tifoidea/microbiología , División Celular/efectos de los fármacos
2.
ACS Cent Sci ; 9(10): 1894-1904, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37901170

RESUMEN

Spike (S) protein opening in SARS-CoV-2 controls the accessibility of its receptor binding domains (RBDs) to host receptors and immune recognition. Along the evolution of SARS-CoV-2 to its variants of concern (VOC)-alpha, beta, gamma, delta, and omicron-their S proteins showed a higher propensity to attain open states. Deciphering how mutations in S protein can shape its conformational dynamics will contribute to the understanding of viral host tropism. Here using microsecond-scale multiple molecular dynamics simulations (MDS), we provide insights into the kinetic and thermodynamic contributions of these mutations to RBD opening pathways in S proteins of SARS-CoV-2 VOCs. Mutational effects were analyzed using atomistic (i) equilibrium MDS of closed and open states of S proteins and (ii) nonequilibrium MDS for closed-to-open transitions. In MDS of closed or open states, RBDs in S proteins of VOCs showed lower thermodynamic stability with higher kinetic fluctuations, compared to S proteins of ancestral SARS-CoV-2. For closed-to-open transitions in S proteins of VOCs, we observed apparently faster RBD opening with a 1.5-2-fold decrease in the thermodynamic free-energy barrier (ΔGclosed→open). Saturation mutagenesis studies highlighted S protein mutations that may control its conformational dynamics and presentation to host receptors.

3.
J Biomol Struct Dyn ; : 1-11, 2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37837418

RESUMEN

Breast cancer (BC) accounts for 30% of all diagnosed cases of cancer in women and remains a leading cause of cancer-related deaths among women worldwide. The current study looks for a protein from the anti-apoptotic/pro-survival BCL-2 family whose overexpression reduces survivability in BC patients and a potential inhibitor for the protein. We found BCL-2A1/BFL1 protein with high expression linked to low survivability in BC. The protein shows prognosis in 8 out of 29 categories, whereas no other family member manifests this property. Out of 7379 compounds, three small molecules (CHEMBL9509, CHEMBL2104550 and CHEMBL3545011) form an H-bond with BCL-2A1/BFL1 protein's unique residue Cys55. Of the three small molecules, we found CHEMBL9509 (Silibinin) to be a potent inhibitor. The compound forms a stable H-bond with the residue Cys55 with the lowest binding energy compared to the other two compounds. It remains stable in the BH3 binding region for more than 100 ns, whereas the other two detach from the region. Additionally, the compound is found to be better than Venetoclax and Nematoclax. We firmly believe in the compound CHEMBL9509 potency to halt BC's progression by inhibiting the BCL-2A1/BFL1 protein, increasing patients' survivability.Communicated by Ramaswamy H. Sarma.

4.
J Cell Biochem ; 124(10): 1516-1529, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37566682

RESUMEN

The emergence of multiple drug resistance and extreme drug resistance pathogens necessitates the continuous evaluation of the pathogenic genome to identify conserved molecular targets and their respective inhibitors. In this study, we mapped the global mutational landscape of Neisseria gonorrhoeae (an intracellular pathogen notoriously known to cause the sexually transmitted disease gonorrhoea). We identified highly variable amino acid positions in the antibiotic target genes like the penA, ponA, 23s rRNA, rpoB, gyrA, parC, mtrR and porB. Some variations are directly reported to confer resistance to the currently used front-line drugs like ceftriaxone, cefixime, azithromycin and ciprofloxacin. Further, by whole genome comparison and Shannon entropy analysis, we identified a completely conserved protein HtpX in the drug-resistant as well as susceptible isolates of N. gonorrhoeae (NgHtpX). Comparison with the only available information of Escherichia coli HtpX suggested it to be a transmembrane metalloprotease having a role in stress response. The critical zinc-binding residue of NgHtpX was mapped to E141. By applying composite high throughput screening followed by MD simulations, we identified pemirolast and thalidomide as high-energy binding ligands of NgHtpX. Following cloning and expression of the purified metal-binding domain of NgHtpX (NgHtpXd), its Zn2+ -binding (Kd = 0.4 µM) and drug-binding (pemirolast, Kd = 3.47 µM; and thalidomide, Kd = 1.04 µM) potentials were determined using in-vitro fluorescence quenching experiment. When tested on N. gonorrhoeae cultures, both the ligands imposed a dose-dependent reduction in viability. Overall, our results provide high entropy positions in the targets of presently used antibiotics, which can be further explored to understand the AMR mechanism. Additionally, HtpX and its specific inhibitors identified can be utilised effectively in managing gonococcal infections.

5.
Biochem J ; 480(14): 1079-1096, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37306466

RESUMEN

Mycobacterium tuberculosis (M. tb), the causative pathogen of tuberculosis (TB) remains the leading cause of death from single infectious agent. Furthermore, its evolution to multi-drug resistant (MDR) and extremely drug-resistant (XDR) strains necessitate de novo identification of drug-targets/candidates or to repurpose existing drugs against known targets through drug repurposing. Repurposing of drugs has gained traction recently where orphan drugs are exploited for new indications. In the current study, we have combined drug repurposing with polypharmacological targeting approach to modulate structure-function of multiple proteins in M. tb. Based on previously established essentiality of genes in M. tb, four proteins implicated in acceleration of protein folding (PpiB), chaperone assisted protein folding (MoxR1), microbial replication (RipA) and host immune modulation (S-adenosyl dependent methyltransferase, sMTase) were selected. Genetic diversity analyses in target proteins showed accumulation of mutations outside respective substrate/drug binding sites. Using a composite receptor-template based screening method followed by molecular dynamics simulations, we have identified potential candidates from FDA approved drugs database; Anidulafungin (anti-fungal), Azilsartan (anti-hypertensive) and Degarelix (anti-cancer). Isothermal titration calorimetric analyses showed that the drugs can bind with high affinity to target proteins and interfere with known protein-protein interaction of MoxR1 and RipA. Cell based inhibitory assays of these drugs against M. tb (H37Ra) culture indicates their potential to interfere with pathogen growth and replication. Topographic assessment of drug-treated bacteria showed induction of morphological aberrations in M. tb. The approved candidates may also serve as scaffolds for optimization to future anti-mycobacterial agents which can target MDR strains of M. tb.


Asunto(s)
Antituberculosos , Reposicionamiento de Medicamentos , Mycobacterium tuberculosis , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Antituberculosos/farmacología , Tuberculosis Extensivamente Resistente a Drogas/tratamiento farmacológico , Anidulafungina/farmacología , Proteínas Bacterianas/genética , Estructura Terciaria de Proteína , Simulación de Dinámica Molecular
6.
Eur J Pharmacol ; 953: 175841, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37329972

RESUMEN

Pathological cardiac hypertrophy is associated with ventricular fibrosis leading to heart failure. The use of thiazolidinediones as Peroxisome Proliferator-Activated Receptor-gamma (PPARγ)-modulating anti-hypertrophic therapeutics has been restricted due to major side-effects. The present study aims to evaluate the anti-fibrotic potential of a novel PPARγ agonist, deoxyelephantopin (DEP) in cardiac hypertrophy. AngiotensinII treatment in vitro and renal artery ligation in vivo were performed to mimic pressure overload-induced cardiac hypertrophy. Myocardial fibrosis was evaluated by Masson's trichrome staining and hydroxyproline assay. Our results showed that DEP treatment significantly improves the echocardiographic parameters by ameliorating ventricular fibrosis without any bystander damage to other major organs. Following molecular docking, all-atomistic molecular dynamics simulation, reverse transcription-polymerase chain reaction and immunoblot analyses, we established DEP as a PPARγ agonist stably interacting with the ligand-binding domain of PPARγ. DEP specifically downregulated the Signal Transducer and Activator of Transcription (STAT)-3-mediated collagen gene expression in a PPARγ-dependent manner, as confirmed by PPARγ silencing and site-directed mutagenesis of DEP-interacting PPARγ residues. Although DEP impaired STAT-3 activation, it did not have any effect on the upstream Interleukin (IL)-6 level implying possible crosstalk of the IL-6/STAT-3 axis with other signaling mediators. Mechanistically, DEP increased the binding of PPARγ with Protein Kinase C-delta (PKCδ) which impeded the membrane translocation and activation of PKCδ, downregulating STAT-3 phosphorylation and resultant fibrosis. This study, therefore, for the first time demonstrates DEP as a novel cardioprotective PPARγ agonist. The therapeutic potential of DEP as an anti-fibrotic remedy can be exploited against hypertrophic heart failure in the future.


Asunto(s)
Insuficiencia Cardíaca , PPAR gamma , Humanos , PPAR gamma/metabolismo , Interleucina-6 , Agonistas de PPAR-gamma , Simulación del Acoplamiento Molecular , Cardiomegalia/patología , Fibrosis
7.
Biochem Biophys Res Commun ; 665: 88-97, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37149987

RESUMEN

Bacillus anthracis Ser/Thr protein kinase PrkC is necessary for phenotypic memory and spore germination, and the loss of PrkC-dependent phosphorylation events affect the spore development. During sporulation, Bacillus sp. can store 3-Phosphoglycerate (3-PGA) that will be required at the onset of germination when ATP will be necessary. The Phosphoglycerate mutase (Pgm) catalyzes the isomerization of 2-PGA and 3-PGA and is important for spore germination as a key metabolic enzyme that maintains 3-PGA pool at later events. Therefore, regulation of Pgm is important for an efficient spore germination process and metabolic switching. While the increased expression of Pgm in B. anthracis decreases spore germination efficiency, it remains unexplored if PrkC could directly influence Pgm activity. Here, we report the phosphorylation and regulation of Pgm by PrkC and its impact on Pgm stability and catalytic activity. Mass spectrometry revealed Pgm phosphorylation on seven threonine residues. In silico mutational analysis highlighted the role of Thr459 residue towards metal and substrate binding. Altogether, we demonstrated that PrkC-mediated Pgm phosphorylation negatively regulates its activity that is essential to maintain Pgm in its apo-like isoform before germination. This study advances the role of Pgm regulation that represents an important switch for B. anthracis resumption of metabolism and spore germination.


Asunto(s)
Bacillus anthracis , Proteínas Quinasas , Fosforilación , Proteínas Quinasas/metabolismo , Bacillus anthracis/metabolismo , Fosfoglicerato Mutasa/metabolismo , Treonina/metabolismo , Esporas Bacterianas/genética , Esporas Bacterianas/metabolismo , Proteínas Bacterianas/metabolismo
8.
RSC Adv ; 13(10): 6827-6837, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36865578

RESUMEN

Optineurin (OPTN) is a multifunctional, ubiquitously expressed cytoplasmic protein, mutants of which are associated with primary open-angle glaucoma (POAG) and amyotrophic lateral sclerosis (ALS). The most abundant heat shock protein crystallin, known for its remarkable thermodynamic stability and chaperoning activity, allows ocular tissues to withstand stress. The presence of OPTN in ocular tissues is intriguing. Interestingly, OPTN also harbors heat shock elements in its promoter region. Sequence analysis of OPTN exhibits intrinsically disordered regions and nucleic acid binding domains. These properties hinted that OPTN might be endowed with sufficient thermodynamic stability and chaperoning activity. However, these attributes of OPTN have not yet been explored. Here, we studied these properties through thermal and chemical denaturation experiments and monitored the processes using CD, fluorimetry, differential scanning calorimetry, and dynamic light scattering. We found that upon heating, OPTN reversibly forms higher-order multimers. OPTN also displayed a chaperone-like function by reducing the thermal aggregation of bovine carbonic anhydrase. It regains its native secondary structure, RNA-binding property, and melting temperature (T m) after refolding from a thermally as well as chemically denatured state. From our data, we conclude that OPTN, with its unique ability to revert from the stress-mediated unfolded state and its unique chaperoning function, is a valuable protein of the ocular tissues.

9.
RSC Adv ; 12(45): 29469-29481, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36320765

RESUMEN

Inherited glaucoma is a recent addition to the inventory of diseases arising due to protein misfolding. Mutations in the olfactomedin (OLF) domain of myocilin are the most common genetic cause behind this disease. Disease associated variants of m-OLF are predisposed to misfold and aggregate in the trabecular meshwork (TM) tissue of the eye. In recent years, the nature of these aggregates was revealed to exhibit the hallmarks of amyloids. Amyloid aggregates are highly stable structures that are formed, often with toxic consequences in a number of debilitating diseases. In spite of its clinical relevance the amyloidogenic nature of m-OLF has not been studied adequately. Here we have studied the amyloid fibrillation of m-OLF and report ECG as an inhibitor against it. Using biophysical and biochemical assays, coupled with advanced microscopic evaluations we show that ECG binds and stabilizes native m-OLF and thus prevents its aggregation into amyloid fibrils. Furthermore, we have used REMD simulations to delineate the stabilizing effects of ECG on the structure of m-OLF. Collectively, we report ECG as a molecular scaffold for designing and testing of novel inhibitors against m-OLF amyloid fibrillation.

10.
Int J Biol Macromol ; 223(Pt A): 755-765, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36368361

RESUMEN

Transmissible spongiform encephalopathies (TSEs) or prion diseases are fatal neurodegenerative diseases with no approved therapeutics. TSE pathology is characterized by abnormal accumulation of amyloidogenic and infectious prion protein conformers (PrPSc) in the central nervous system. Herein, we examined the role of gallate group in green tea catechins in modulating the aggregation of human prion protein (HuPrP) using two green tea constituents i.e., epicatechin 3-gallate (EC3G; with intact gallate ring) and epigallocatechin (EGC; without gallate ring). Molecular docking indicated distinct differences in hydrogen bonding and hydrophobic interactions of EC3G and EGC at the ß2-α2 loop of HuPrP. These differences were substantiated by 44-fold higher KD for EC3G as compared to EGC with the former significantly reducing Thioflavin T (ThT) binding aggregates of HuPrP. Conformational alterations in HuPrP aggregates were validated by particle sizing, AFM analysis and A11 and OC conformational antibodies. As compared to EGC, EC3G showed relatively higher reduction in toxicity and cellular internalization of HuPrP oligomers in Neuro-2a cells. Additionally, EC3G also displayed higher fibril disaggregating properties as observed by ThT kinetics and electron microscopy. Our observations were supported by molecular dynamics (MD) simulations that showed markedly reduced α2-α3 and ß2-α2 loop mobilities in presence of EC3G that may lead to constriction of HuPrP conformational space with lowered ß-sheet conversion. In totality, gallate moiety of catechins play key role in modulating HuPrP aggregation, and toxicity and could be a new structural motif for designing therapeutics against prion diseases and other neurodegenerative disorders.


Asunto(s)
Catequina , Enfermedades por Prión , Priones , Humanos , Priones/química , Proteínas Priónicas/química , , Simulación del Acoplamiento Molecular , Catequina/farmacología
11.
Biochemistry ; 61(20): 2188-2197, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36166360

RESUMEN

The receptor binding domain(s) (RBD) of spike (S) proteins of SARS-CoV-1 and SARS-CoV-2 (severe acute respiratory syndrome coronavirus) undergoes closed to open transition to engage with host ACE2 receptors. In this study, using multi atomistic (equilibrium) and targeted (non-equilibrium) molecular dynamics simulations, we have compared energetics of RBD opening pathways in full-length (modeled from cryo-EM structures) S proteins of SARS-CoV-1 and SARS-CoV-2. Our data indicate that amino acid variations at the RBD interaction interface can culminate into distinct free energy landscapes of RBD opening in these S proteins. We further report that mutations in the S protein of SARS-CoV-2 variants of concern can reduce the protein-protein interaction affinity of RBD(s) with its neighboring domains and could favor its opening to access ACE2 receptors. The findings can also aid in predicting the impact of future mutations on the rate of S protein opening for rapid host receptor scanning.


Asunto(s)
SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Aminoácidos/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Sitios de Unión , COVID-19/genética , Mutación , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química
12.
BMC Bioinformatics ; 23(1): 319, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35931960

RESUMEN

BACKGROUND: Visceral Leishmaniasis (VL) is a fatal vector-borne parasitic disorder occurring mainly in tropical and subtropical regions. VL falls under the category of neglected tropical diseases with growing drug resistance and lacking a licensed vaccine. Conventional vaccine synthesis techniques are often very laborious and challenging. With the advancement of bioinformatics and its application in immunology, it is now more convenient to design multi-epitope vaccines comprising predicted immuno-dominant epitopes of multiple antigenic proteins. We have chosen four antigenic proteins of Leishmania donovani and identified their T-cell and B-cell epitopes, utilizing those for in-silico chimeric vaccine designing. The various physicochemical characteristics of the vaccine have been explored and the tertiary structure of the chimeric construct is predicted to perform docking studies and molecular dynamics simulations. RESULTS: The vaccine construct is generated by joining the epitopes with specific linkers. The predicted tertiary structure of the vaccine has been found to be valid and docking studies reveal the construct shows a high affinity towards the TLR-4 receptor. Population coverage analysis shows the vaccine can be effective on the majority of the world population. In-silico immune simulation studies confirms the vaccine to raise a pro-inflammatory response with the proliferation of activated T and B cells. In-silico codon optimization and cloning of the vaccine nucleic acid sequence have also been achieved in the pET28a vector. CONCLUSION: The above bioinformatics data support that the construct may act as a potential vaccine. Further wet lab synthesis of the vaccine and in vivo works has to be undertaken in animal model to confirm vaccine potency.


Asunto(s)
Leishmania donovani , Leishmaniasis Visceral , Biología Computacional/métodos , Epítopos de Linfocito B , Epítopos de Linfocito T/química , Humanos , Leishmaniasis Visceral/prevención & control , Simulación del Acoplamiento Molecular , Vacunas de Subunidad/química
13.
J Cell Biochem ; 123(7): 1171-1182, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35527389

RESUMEN

The emergence of multiple drug-resistant "super gonorrhoea" complicates the management and treatment of Neisseria gonorrhoeae infections due to the progressive accumulation of mutations in the biological targets of frontline antimicrobials. Continuous evaluation and reporting of newer molecular targets and their inhibitors are necessary. Here, we present l-asparaginase of N. gonorrhoeae (NgA) as a new molecular target based on structure-based high-throughput screening, molecular dynamics(MD) simulations, and validation by biophysical, biochemical, and cell viability assays. We observed that the NgA is evolutionarily conserved in both the drug-resistant and susceptible strains of N. gonorrhoeae, indicating its importance in the growth and survival of the pathogen. Three Food and Drug Administration-approved drugs, pemirolast, thalidomide, and decitabine, were identified as potential inhibitors of NgA using high-throughput screening. The binding energies of the drugs with NgA were -20.14, -19.67, and -16.47 kcal/mol, respectively, compared to -6.82 ± 1.46 for enzyme-substrate l-Asn, as obtained through MD simulations. Subsequently, fluorescence quenching and differential scanning calorimetry experiments validated the in silico data. The observance of inhibition of NgA activity at micromolar drug concentrations further strengthened our findings. Conclusive evidence came from the cell viability assays where these drugs were found to impede the growth of N. gonorrhoeae culture effectively. Thus, our study establishes l-asparaginase as a new molecular target against gonococcal infections. From this study, we propose that targeting of NgA can be explored to control N. gonorrhoeae infections in combination therapy.


Asunto(s)
Antiinfecciosos , Gonorrea , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Asparaginasa/farmacología , Farmacorresistencia Bacteriana/genética , Gonorrea/tratamiento farmacológico , Gonorrea/prevención & control , Humanos , Pruebas de Sensibilidad Microbiana , Neisseria gonorrhoeae/genética
14.
RSC Adv ; 13(1): 720, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36605666

RESUMEN

[This corrects the article DOI: 10.1039/D2RA05061G.].

15.
Biochimie ; 182: 1-12, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33412160

RESUMEN

The emergence of drug-resistant Mycobacterium tuberculosis (Mtb) stains has escalated the need for developing more efficient drugs and therapeutic strategies against tuberculosis. Here we functionally annotate a secretory mycobacterial asparaginase Rv1538c (MtA) and describe its biochemical properties. MtA primarily existed as dimer along with a minor population of multimers. Circular dichroism and fluorescence spectroscopy demonstrated a compact structure in Tris HCl buffer at pH 8.0. Under these conditions it also displayed optimum activity. It retained ∼40% activity at pH 5.5, supporting its physiological relevance in acidic phagosomal environment. MtA contravened classical Michaelis-Menten kinetics and exhibited product inhibition profile, yielding a Kcat of 869.4 s-1 and an apparent Km of 8.36 mM. We report the presence of several antigenic epitopes and a C-terminal YXXXD/E motif in MtA, hinting towards its potential to interact or influence host immune system. This was supported by our observation of morphological changes in MtA-treated human B lymphoblasts. We propose that MtA is a dual purpose enzyme used by Mtb to survive inside its host by; 1) ammonia-mediated neutralization of the phagosomal acidic pH and 2) inducing stress to primary immune cells and compromising the host immune response. Overall, this study contributes to our understanding of the biological role of mycobacterial asparaginase opening avenues for developing effective TB therapeutics.


Asunto(s)
Asparaginasa , Linfocitos B/microbiología , Proteínas Bacterianas , Viabilidad Microbiana , Mycobacterium tuberculosis , Fagosomas/microbiología , Asparaginasa/química , Asparaginasa/genética , Asparaginasa/metabolismo , Linfocitos B/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Humanos , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Fagosomas/metabolismo , Células THP-1
16.
Sci Rep ; 10(1): 21702, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33303914

RESUMEN

It remains undeciphered how thermophilic enzymes display enhanced stability at elevated temperatures. Taking L-asparaginase from P. furiosus (PfA) as an example, we combined scattering shapes deduced from small-angle X-ray scattering (SAXS) data at increased temperatures with symmetry mates from crystallographic structures to find that heating caused end-to-end association. The small contact point of self-binding appeared to be enabled by a terminal short ß-strand in N-terminal domain, Leu179-Val-Val-Asn182 (LVVN). Interestingly, deletion of this strand led to a defunct enzyme, whereas suplementation of the peptide LVVN to the defunct enzyme restored structural frameworkwith mesophile-type functionality. Crystal structure of the peptide-bound defunct enzyme showed that one peptide ispresent in the same coordinates as in original enzyme, explaining gain-of lost function. A second peptide was seen bound to the protein at a different location suggesting its possible role in substrate-free molecular-association. Overall, we show that the heating induced self-assembly of native shapes of PfA led to an apparent super-stable assembly.


Asunto(s)
Asparaginasa/metabolismo , Calor , Pyrococcus furiosus/enzimología , Secuencia de Aminoácidos , Asparaginasa/química , Cristalografía por Rayos X , Estabilidad de Enzimas , Calor/efectos adversos , Conformación Proteica en Lámina beta , Desnaturalización Proteica , Dominios Proteicos
17.
J Biotechnol ; 310: 68-79, 2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-32014561

RESUMEN

Chaperones are a diverse class of molecules known for increasing thermo-stability of proteins, preventing protein aggregation, favoring disaggregation, increasing solubility and in some cases imparting resistance to proteolysis. These functions can be employed for various biotechnological applications including point of care testing, nano-biotechnology, bio-process engineering, purification technologies and formulation development. Here we report that the N-terminal domain of Pyrococcus furiosusl-asparaginase, (NPfA, a protein chaperone lacking α-crystallin domain) can serve as an efficient, industrially relevant, protein additive. We tested the effect of NPfA on substrate proteins, ascorbate peroxidase (APX), IgG peroxidase antibodies (I-HAbs) and KOD DNA polymerase. Each protein not only displayed increased thermal stability but also increased activity in the presence of NPfA. This increase was either comparable or higher than those obtained by common osmolytes; glycine betaine, sorbitol and trehalose. Most dramatic activity enhancement was seen in the case of KOD polymerase (∼ 40 % increase). NPfA exerts its effect through transient binding to the substrate proteins as discerned through isothermal titration calorimetry, dynamic light scattering and size exclusion chromatography. Mechanistic insights obtained through simulations suggested a remodeled architecture and emergence of H-binding network between NPfA and substrate protein with an effective enhancement in the solvent accessibility at the active site pocket of the latter. Thus, the capability of NPfA to engage in specific manner with other proteins is demonstrated to reduce the concentration of substrate proteins/enzymes required per unit operation. The functional expansion obtained through our finding establishes NPfA as a novel class of ATP-independent molecular chaperone with immense future biotechnological applications.


Asunto(s)
Proteínas Arqueales/química , Asparaginasa/química , Chaperonas Moleculares/química , Pyrococcus furiosus/química , Proteínas Arqueales/genética , Asparaginasa/genética , Chaperonas Moleculares/genética , Plasmodium falciparum/química , Plasmodium falciparum/genética , Dominios Proteicos , Estabilidad Proteica , Pyrococcus furiosus/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Thermococcus/química , Thermococcus/genética
18.
Biochim Biophys Acta Gene Regul Mech ; 1863(3): 194479, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31931179

RESUMEN

Cellular prion protein (PrP) misfolds into an aberrant and infectious scrapie form (PrPSc) that lead to fatal transmissible spongiform encephalopathies (TSEs). Association of prions with G-quadruplex (GQ) forming nucleic acid motifs has been reported, but implications of these interactions remain elusive. Herein, we show that the promoter region of the human prion gene (PRNP) contains two putative GQ motifs (Q1 and Q2) that assume stable, hybrid, intra-molecular quadruplex structures and bind with high affinity to PrP. Here, we investigate the ability of PrP to bind to the quadruplexes in its own promoter. We used a battery of techniques including SPR, NMR, CD, MD simulations and cell culture-based reporter assays. Our results show that PrP auto-regulates its expression by binding and resolving the GQs present in its own promoter. Furthermore, we map this resolvase-like activity to the N-terminal region (residues 23-89) of PrP. Our findings highlight a positive transcriptional-translational feedback regulation of the PRNP gene by PrP through dynamic unwinding of GQs in its promoter. Taken together, our results shed light on a yet unknown mechanism of regulation of the PRNP gene. This work provides the necessary framework for a plethora of studies on understanding the regulation of PrP levels and its implications in prion pathogenesis.


Asunto(s)
G-Cuádruplex , Regulación de la Expresión Génica , Proteínas Priónicas/genética , Regiones Promotoras Genéticas , Transcripción Genética , Células Cultivadas , Retroalimentación Fisiológica , Humanos , Proteínas Priónicas/biosíntesis , Proteínas Priónicas/química , Proteínas Priónicas/metabolismo
19.
ACS Chem Neurosci ; 11(16): 2422-2430, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31407881

RESUMEN

Herein, we report novel neuroprotective activity of the neurohypophyseal hormone analogue desmopressin (DDAVP) against toxic conformations of human prion protein. Systematic analysis using biophysical techniques in conjunction with surface plasmon resonance, high-end microscopy, conformational antibodies, and cell-based assays demonstrated DDAVP's specific binding and potent antiaggregating effects on prion protein (rPrPres). In addition to subjugating conformational conversion of rPrPres into oligomeric forms, DDAVP also exhibits potent fibril modulatory effects. It eventually ameliorated neuronal toxicity of rPrPres oligomers by significantly reducing their cellular internalization. Molecular dynamics simulations showed that DDAVP prevents ß-sheet transitions in the N-terminal amyloidogenic region of prion and induces antagonistic mobilities in its α2-α3 and ß2-α2 loop regions. Collectively, our data proposes DDAVP as a new structural motif for rational drug discovery against prion diseases.


Asunto(s)
Enfermedades por Prión , Priones , Hormonas , Humanos , Proteínas Priónicas , Conformación Proteica en Lámina beta
20.
Biochem J ; 476(12): 1817-1841, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31138770

RESUMEN

Compelling evidence implicates self-assembly of amyloid-ß (Aß1-42) peptides into soluble oligomers and fibrils as a major underlying event in Alzheimer's disease (AD) pathogenesis. Herein, we employed amyloid-degrading keratinase (kerA) enzyme as a key Aß1-42-binding scaffold to identify five keratinase-guided peptides (KgPs) capable of interacting with and altering amyloidogenic conversion of Aß1-42 The KgPs showed micromolar affinities with Aß1-42 and abolished its sigmoidal amyloidogenic transition, resulting in abrogation of fibrillogenesis. Comprehensive assessment using dynamic light scattering (DLS), atomic force microscopy (AFM) and Fourier-transform infrared (FTIR) spectroscopy showed that KgPs induced the formation of off-pathway oligomers comparatively larger than the native Aß1-42 oligomers but with a significantly reduced cross-ß signature. These off-pathway oligomers exhibited low immunoreactivity against oligomer-specific (A11) and fibril-specific (OC) antibodies and rescued neuronal cells from Aß1-42 oligomer toxicity as well as neuronal apoptosis. Structural analysis using molecular docking and molecular dynamics (MD) simulations showed two preferred KgP binding sites (Lys16-Phe20 and Leu28-Val39) on the NMR ensembles of monomeric and fibrillar Aß1-42, indicating an interruption of crucial hydrophobic and aromatic interactions. Overall, our results demonstrate a new approach for designing potential anti-amyloid molecules that could pave way for developing effective therapeutics against AD and other amyloid diseases.


Asunto(s)
Péptidos beta-Amiloides , Apoptosis , Bacillus licheniformis/enzimología , Proteínas Bacterianas/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Neuronas/metabolismo , Fragmentos de Péptidos , Péptido Hidrolasas/química , Agregado de Proteínas , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Línea Celular Tumoral , Humanos , Neuronas/patología , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...