Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Monit Assess ; 194(4): 251, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35253101

RESUMEN

Present study is a maiden attempt to assess net ecosystem exchange (NEE) of carbon dioxide (CO2) flux from jute crop (Corchorus olitorius L.) in the Indo-Gangetic plain by using open-path eddy covariance (EC) technique. Diurnal variations of NEE were strongly influenced by growth stages of jute crop. Daytime peak NEE varied from - 5 µmol m-2 s-1 (in germination stage) to - 23 µmol m-2 s-1 (in fibre development stage). The ecosystem was net CO2 source during nighttime with an average NEE value of 5-8 µmol m-2 s-1. Combining both daytime and nighttime CO2 fluxes, jute ecosystem was found to be a net CO2 sink on a daily basis except the initial 9 days from date of sowing. Seasonal and growth stage-wise NEEs were computed, and the seasonal total NEE over the jute season was found to be - 268.5 gC m-2 (i.e. 10.3 t CO2 ha-1). In different jute growth stages, diurnal variations of NEE were strongly correlated (R2 > 0.9) with photosynthetic photon flux density (PPFD). Ecosystem level photosynthetic efficiency parameters were estimated at each growth stage of jute crop using the Michaelis-Menten equation. The maximum values of photosynthetic capacity (Pmax, 63.3 ± 1.15 µmol CO2 m-2 s-1) and apparent quantum yield (α, 0.072 ± 0.0045 µmol CO2 µmol photon-1) were observed during the active vegetative stage, and the fibre development stage, respectively. Results of the present study would significantly contribute to understanding of the carbon flux from the Indian agro-ecosystems, which otherwise are very sparse.


Asunto(s)
Corchorus , Ecosistema , Ciclo del Carbono , Dióxido de Carbono/análisis , Monitoreo del Ambiente , Estaciones del Año
2.
Springerplus ; 2: 631, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24303340

RESUMEN

Effects of cropping practices on soil properties viz. particle size distribution, pH, bulk density (BD), field capacity (FC, -33 kPa), permanent wilting point (PWP, -1500 kPa), available water capacity (AWC) and soil organic carbon (SOC) were assessed. The pedotransfer functions (PTFs) were developed for saturated hydraulic conductivity (Ks), water retention at FC and PWP of soils for different sites under major cropping system in a canal irrigated area. The results revealed that the soils are mainly composed of sand and clay with the clay contents ranging from 29.6 to 48.8%, BD of 1.44-1.72 Mg m(-3), and 0.34 to 0.95% SOC. The Ks decreased, and water retention at FC, PWP and AWC increased significantly with soil depth due to greater clay contents in lower soil depths. The PTFs were best represented as the power functions for prediction of Ks with clay content as predictor variable; whereas the PTFs for water retention at FC and PWP were better represented as the exponential functions. SOC content was higher under rice-sugarcane crop rotation compared to other systems. SOC storage in the surface layer was higher in rice-sugarcane rotation (18.90-20.53 Mg ha(-1)) than other sites. The developed PTFs would be very useful in soil and water management strategies for the study area or elsewhere having similar soil and cropping practices. The information on SOC storage in the Kuanria region would help for better soil and crop planning in future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...