Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38496490

RESUMEN

Molecular mechanisms driving clonal aggressiveness in leukemia are not fully understood. We tracked and analyzed two mouse MLL-rearranged leukemic clones independently evolving towards higher aggressiveness. More aggressive subclones lost their growth differential ex vivo but restored it upon secondary transplantation, suggesting molecular memory of aggressiveness. Development of aggressiveness was associated with clone-specific gradual modulation of chromatin states and expression levels across the genome, with a surprising preferential trend of reversing the earlier changes between normal and leukemic progenitors. To focus on the core aggressiveness program, we identified genes with consistent changes of expression and chromatin marks that were maintained in vivo and ex vivo in both clones. Overexpressing selected core genes (Smad1 as aggressiveness driver, Irx5 and Plag1 as suppressors) affected leukemic progenitor growth in the predicted way and had convergent downstream effects on central transcription factors and repressive epigenetic modifiers, suggesting a broader regulatory network of leukemic aggressiveness.

2.
Cell Rep ; 37(6): 109990, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34758327

RESUMEN

As pluripotent human embryonic stem cells progress toward one germ layer fate, they lose the ability to adopt alternative fates. Using a low-dimensional reaction coordinate to monitor progression toward ectoderm, we show that a differentiating stem cell's probability of adopting a mesendodermal fate given appropriate signals falls sharply at a point along the ectoderm trajectory. We use this reaction coordinate to prospectively isolate and profile differentiating cells based on their mesendoderm competence and analyze their RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin using sequencing (ATAC-seq) profiles to identify transcription factors that control the cell's mesendoderm competence. By modulating these key transcription factors, we can expand or contract the window of competence to adopt the mesendodermal fate along the ectodermal differentiation trajectory. The ability of the underlying gene regulatory network to modulate competence is essential for understanding human development and controlling the fate choices of stem cells in vitro.


Asunto(s)
Linaje de la Célula , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/citología , Células Madre Embrionarias Humanas/citología , Mesodermo/citología , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factores de Transcripción SOXB1/metabolismo , Diferenciación Celular , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Estratos Germinativos/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Humanos , Mesodermo/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , RNA-Seq , Factores de Transcripción SOXB1/genética
4.
Mol Cell ; 68(5): 872-884.e6, 2017 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-29153392

RESUMEN

Polycomb repressive complex 2 (PRC2-EZH2) methylates histone H3 at lysine 27 (H3K27) and is required to maintain gene repression during development. Misregulation of PRC2 is linked to a range of neoplastic malignancies, which is believed to involve methylation of H3K27. However, the full spectrum of non-histone substrates of PRC2 that might also contribute to PRC2 function is not known. We characterized the target recognition specificity of the PRC2 active site and used the resultant data to screen for uncharacterized potential targets. The RNA polymerase II (Pol II) transcription elongation factor, Elongin A (EloA), is methylated by PRC2 in vivo. Mutation of the methylated EloA residue decreased repression of a subset of PRC2 target genes as measured by both steady-state and nascent RNA levels and perturbed embryonic stem cell differentiation. We propose that PRC2 modulates transcription of a subset of low expression target genes in part via methylation of EloA.


Asunto(s)
Diferenciación Celular , Metilación de ADN , Elonguina/metabolismo , Células Madre Embrionarias/metabolismo , Epigénesis Genética , Histonas/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Transcripción Genética , Células 3T3-L1 , Animales , Elonguina/genética , Regulación del Desarrollo de la Expresión Génica , Histonas/genética , Ratones , Mutación , Complejo Represivo Polycomb 2/genética , Transfección
5.
Genes Dev ; 31(11): 1069-1072, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28717045

RESUMEN

Development requires the expression of master regulatory genes necessary to specify a cell lineage. Equally significant is the stable and heritable silencing of master regulators that would specify alternative lineages. This regulated gene silencing is carried out by Polycomb group (PcG) proteins, which must be correctly recruited only to the subset of their target loci that requires lineage-specific silencing. A recent study by Erceg and colleagues (pp. 590-602) expands on a key aspect of that targeting: The same DNA elements that recruit PcG complexes to a repressed locus also encode transcriptional enhancers that function in different lineages where that locus must be expressed. Thus, PcG targeting elements overlap with enhancers.


Asunto(s)
Drosophila melanogaster/genética , Proteínas del Grupo Polycomb/genética , Animales , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Complejo Represivo Polycomb 1/genética , Elementos de Respuesta
6.
Science ; 355(6329): 1081-1084, 2017 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-28280206

RESUMEN

Nucleosomes play important structural and regulatory roles by tightly wrapping the DNA that constitutes the metazoan genome. The Polycomb group (PcG) proteins modulate nucleosomes to maintain repression of key developmental genes, including Hox genes whose temporal and spatial expression is tightly regulated to guide patterning of the anterior-posterior body axis. CBX2, a component of the mammalian Polycomb repressive complex 1 (PRC1), contains a compaction region that has the biochemically defined activity of bridging adjacent nucleosomes. Here, we demonstrate that a functional compaction region is necessary for proper body patterning, because mutating this region leads to homeotic transformations similar to those observed with PcG loss-of-function mutations. We propose that CBX2-driven nucleosome compaction is a key mechanism by which PcG proteins maintain gene silencing during mouse development.


Asunto(s)
Tipificación del Cuerpo/genética , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Genes Homeobox , Nucleosomas/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Animales , Línea Celular , Ratones , Ratones Mutantes , Mutación , Nucleosomas/genética , Complejo Represivo Polycomb 1/genética , Unión Proteica , Esqueleto/crecimiento & desarrollo
7.
Genes Dev ; 31(5): 451-462, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28356342

RESUMEN

Activation of transcription requires alteration of chromatin by complexes that increase the accessibility of nucleosomal DNA. Removing nucleosomes from regulatory sequences has been proposed to play a significant role in activation. We tested whether changes in nucleosome occupancy occurred on the set of genes that is activated by the unfolded protein response (UPR). We observed no decrease in occupancy on most promoters, gene bodies, and enhancers. Instead, there was an increase in the accessibility of nucleosomes, as measured by micrococcal nuclease (MNase) digestion and ATAC-seq (assay for transposase-accessible chromatin [ATAC] using sequencing), that did not result from removal of the nucleosome. Thus, changes in nucleosome accessibility predominate over changes in nucleosome occupancy during rapid transcriptional induction during the UPR.


Asunto(s)
Regulación de la Expresión Génica , Nucleosomas/metabolismo , Respuesta de Proteína Desplegada/fisiología , Animales , Línea Celular , Cromatina/química , Cromatina/metabolismo , Mapeo Cromosómico , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Elementos de Facilitación Genéticos/genética , Nucleasa Microcócica/metabolismo , Nucleosomas/química , Regiones Promotoras Genéticas/genética , Unión Proteica
8.
Mol Cell ; 65(3): 432-446.e5, 2017 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-28157505

RESUMEN

Master regulatory genes require stable silencing by the polycomb group (PcG) to prevent misexpression during differentiation and development. Some PcG proteins covalently modify histones, which contributes to heritable repression. The role for other effects on chromatin structure is less understood. We characterized the organization of PcG target genes in ESCs and neural progenitors using 5C and super-resolution microscopy. The genomic loci of repressed PcG targets formed discrete, small (20-140 Kb) domains of tight interaction that corresponded to locations bound by canonical polycomb repressive complex 1 (PRC1). These domains changed during differentiation as PRC1 binding changed. Their formation depended upon the Polyhomeotic component of canonical PRC1 and occurred independently of PRC1-catalyzed ubiquitylation. PRC1 domains differ from topologically associating domains in size and boundary characteristics. These domains have the potential to play a key role in transmitting epigenetic silencing of PcG targets by linking PRC1 to formation of a repressive higher-order structure.


Asunto(s)
ADN/metabolismo , Células Madre Embrionarias/citología , Células-Madre Neurales/citología , Complejo Represivo Polycomb 1/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , ADN/química , ADN/genética , Células Madre Embrionarias/metabolismo , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Células-Madre Neurales/metabolismo , Complejo Represivo Polycomb 1/química , Dominios Proteicos , Ubiquitinación
9.
Elife ; 52016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27304074

RESUMEN

The organization of DNA into chromatin is dynamic; nucleosomes are frequently displaced to facilitate the ability of regulatory proteins to access specific DNA elements. To gain insight into nucleosome dynamics, and to follow how dynamics change during differentiation, we used a technique called time-ChIP to quantitatively assess histone H3.3 turnover genome-wide during differentiation of mouse ESCs. We found that, without prior assumptions, high turnover could be used to identify regions involved in gene regulation. High turnover was seen at enhancers, as observed previously, with particularly high turnover at super-enhancers. In contrast, regions associated with the repressive Polycomb-Group showed low turnover in ESCs. Turnover correlated with DNA accessibility. Upon differentiation, numerous changes in H3.3 turnover rates were observed, the majority of which occurred at enhancers. Thus, time-ChIP measurement of histone turnover shows that active enhancers are unusually dynamic in ESCs and changes in highly dynamic nucleosomes predominate at enhancers during differentiation.


Asunto(s)
Diferenciación Celular , Histonas/metabolismo , Células Madre Embrionarias de Ratones/fisiología , Nucleosomas/metabolismo , Animales , Inmunoprecipitación de Cromatina , ADN/metabolismo , Elementos de Facilitación Genéticos , Ratones , Unión Proteica , Factores de Tiempo
10.
Nat Commun ; 7: 11485, 2016 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-27151365

RESUMEN

Chromatin accessibility plays a fundamental role in gene regulation. Nucleosome placement, usually measured by quantifying protection of DNA from enzymatic digestion, can regulate accessibility. We introduce a metric that uses micrococcal nuclease (MNase) digestion in a novel manner to measure chromatin accessibility by combining information from several digests of increasing depths. This metric, MACC (MNase accessibility), quantifies the inherent heterogeneity of nucleosome accessibility in which some nucleosomes are seen preferentially at high MNase and some at low MNase. MACC interrogates each genomic locus, measuring both nucleosome location and accessibility in the same assay. MACC can be performed either with or without a histone immunoprecipitation step, and thereby compares histone and non-histone protection. We find that changes in accessibility at enhancers, promoters and other regulatory regions do not correlate with changes in nucleosome occupancy. Moreover, high nucleosome occupancy does not necessarily preclude high accessibility, which reveals novel principles of chromatin regulation.


Asunto(s)
Cromatina/metabolismo , Nucleasa Microcócica , Nucleosomas/metabolismo , Animales , Línea Celular , Drosophila melanogaster , Regulación de la Expresión Génica , Histonas/metabolismo , Humanos , Células K562 , Ratones , Células Madre Embrionarias de Ratones , Células-Madre Neurales , Regiones Promotoras Genéticas , Análisis de Secuencia de ARN
11.
J Clin Invest ; 123(11): 4849-58, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24216481

RESUMEN

Inadequate functional ß cell mass underlies both type 1 and type 2 diabetes. ß Cell growth and regeneration also decrease with age through mechanisms that are not fully understood. Age-dependent loss of enhancer of zeste homolog 2 (EZH2) prevents adult ß cell replication through derepression of the gene encoding cyclin-dependent kinase inhibitor 2a (INK4a). We investigated whether replenishing EZH2 could reverse the age-dependent increase of Ink4a transcription. We generated an inducible pancreatic ß cell-specific Ezh2 transgenic mouse model and showed that transgene expression of Ezh2 was sufficient to increase ß cell replication and regeneration in young adult mice. In mice older than 8 months, induction of Ezh2 was unable to repress Ink4a. Older mice had an enrichment of a trithorax group (TrxG) protein complex at the Ink4a locus. Knockdown of TrxG complex components, in conjunction with expression of Ezh2, resulted in Ink4a repression and increased replication of ß cells in aged mice. These results indicate that combined modulation of polycomb group proteins, such as EZH2, along with TrxG proteins to repress Ink4a can rejuvenate the replication capacity of aged ß cells. This study provides potential therapeutic targets for expansion of adult ß cell mass.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Complejo Represivo Polycomb 2/genética , Proteínas del Grupo Polycomb/genética , Envejecimiento/genética , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Proliferación Celular , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Proteína Potenciadora del Homólogo Zeste 2 , Expresión Génica , Técnicas de Silenciamiento del Gen , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Transgénicos , Proteína de la Leucemia Mieloide-Linfoide/genética , Complejo Represivo Polycomb 2/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
12.
Mol Cell Biol ; 30(10): 2330-40, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20212085

RESUMEN

Several recent studies have shown that the transcriptional induction of yeast GAL genes occurs with faster kinetics if the gene has been previously expressed. Depending on the experimental regimen, this transcriptional "memory" phenomenon can persist for 1 to 2 cell divisions in the absence of an inducer (short-term memory) or for >6 cell divisions (long-term memory). Long-term memory requires the GAL1 gene, suggesting that memory involves the cytoplasmic inheritance of high levels of Gal1 that are expressed in the initial round of expression. In contrast, short-term memory requires the SWI/SNF chromatin-remodeling enzyme, and thus, it may involve the inheritance of distinct chromatin states. Here we have reevaluated the roles of SWI/SNF, the histone variant H2A.Z, and components of the nuclear pore in both the short-term and long-term memory of GAL genes. Our results suggest that the propagation of novel chromatin structures does not contribute to the transcriptional memory of GAL genes, but rather, memory of the previous transcription state is controlled primarily by the inheritance of the Gal3p and Gal1p signaling factors.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Transducción de Señal/fisiología , Factores de Transcripción , Transcripción Genética , Cromatina/metabolismo , Histonas/genética , Histonas/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Biochim Biophys Acta ; 1790(6): 445-55, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19236904

RESUMEN

Establishment of cellular memory and its faithful propagation is critical for successful development of multicellular organisms. As pluripotent cells differentiate, choices in cell fate are inherited and maintained by their progeny throughout the lifetime of the organism. A major factor in this process is the epigenetic inheritance of specific transcriptional states or transcriptional memory. In this review, we discuss chromatin transitions and mechanisms by which they are inherited by subsequent generations. We also discuss illuminating cases of cellular memory in budding yeast and evaluate whether transcriptional memory in yeast is nuclear or cytoplasmically inherited.


Asunto(s)
Cromatina , Epigénesis Genética , Transcripción Genética , División Celular/fisiología , Cromatina/química , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Metilación de ADN , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Histonas/metabolismo , Saccharomycetales/genética , Saccharomycetales/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Genes Dev ; 21(8): 997-1004, 2007 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-17438002

RESUMEN

Post-translational modification of nucleosomal histones has been suggested to contribute to epigenetic transcriptional memory. We describe a case of transcriptional memory in yeast where the rate of transcriptional induction of GAL1 is regulated by the prior expression state. This epigenetic state is inherited by daughter cells, but does not require the histone acetyltransferase, Gcn5p, the histone ubiquitinylating enzyme, Rad6p, or the histone methylases, Dot1p, Set1p, or Set2p. In contrast, we show that the ATP-dependent chromatin remodeling enzyme, SWI/SNF, is essential for transcriptional memory at GAL1. Genetic studies indicate that SWI/SNF controls transcriptional memory by antagonizing ISWI-like chromatin remodeling enzymes.


Asunto(s)
Galactoquinasa/genética , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transcripción Genética , Adenosina Trifosfatasas/metabolismo , Genes Fúngicos , Glucosa/metabolismo , Histonas/metabolismo , Familia de Multigenes , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...