Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Crystallogr D Struct Biol ; 79(Pt 4): 290-303, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36974963

RESUMEN

Phosphoketolase and transketolase are thiamine diphosphate-dependent enzymes and play a central role in the primary metabolism of bifidobacteria: the bifid shunt. The enzymes both catalyze phosphorolytic cleavage of xylulose 5-phosphate or fructose 6-phosphate in the first reaction step, but possess different substrate specificity in the second reaction step, where phosphoketolase and transketolase utilize inorganic phosphate (Pi) and D-ribose 5-phosphate, respectively, as the acceptor substrate. Structures of Bifidobacterium longum phosphoketolase holoenzyme and its complex with a putative inhibitor, phosphoenolpyruvate, were determined at 2.5 Šresolution by serial femtosecond crystallography using an X-ray free-electron laser. In the complex structure, phosphoenolpyruvate was present at the entrance to the active-site pocket and plugged the channel to thiamine diphosphate. The phosphate-group position of phosphoenolpyruvate coincided well with those of xylulose 5-phosphate and fructose 6-phosphate in the structures of their complexes with transketolase. The most striking structural change was observed in a loop consisting of Gln546-Asp547-His548-Asn549 (the QN-loop) at the entrance to the active-site pocket. Contrary to the conformation of the QN-loop that partially covers the entrance to the active-site pocket (`closed form') in the known crystal structures, including the phosphoketolase holoenzyme and its complexes with reaction intermediates, the QN-loop in the current ambient structures showed a more compact conformation with a widened entrance to the active-site pocket (`open form'). In the phosphoketolase reaction, the `open form' QN-loop may play a role in providing the binding site for xylulose 5-phosphate or fructose 6-phosphate in the first step, and the `closed form' QN-loop may help confer specificity for Pi in the second step.


Asunto(s)
Bifidobacterium longum , Tiamina Pirofosfato , Tiamina Pirofosfato/química , Tiamina Pirofosfato/metabolismo , Bifidobacterium longum/metabolismo , Cristalografía por Rayos X , Transcetolasa/química , Transcetolasa/metabolismo , Fosfoenolpiruvato , Temperatura , Xilulosa , Dominio Catalítico , Fructosa
2.
Microscopy (Oxf) ; 71(6): 315-323, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-35778966

RESUMEN

X-ray microscopes adopting computed tomography enable nondestructive 3D visualization of biological specimens at micron-level resolution without conventional 2D serial sectioning that is a destructive/laborious method and is routinely used for analyzing renal biopsy in clinical diagnosis of kidney diseases. Here we applied a compact commercial system of laboratory-based X-ray microscope to observe a resin-embedded osmium-stained 1-mm strip of a mouse kidney piece as a model of renal biopsy, toward a more efficient diagnosis of kidney diseases. A reconstructed computed tomography image from several hours of data collection using CCD detector allowed us to unambiguously segment a single nephron connected to a renal corpuscle, which was consistent with previous reports using serial sectioning. Histogram analysis on the segmented nephron confirmed that the proximal and distal tubules were distinguishable on the basis of their X-ray opacities. A 3D rendering model of the segmented nephron visualized a convoluted structure of renal tubules neighboring the renal corpuscle and a branched structure of efferent arterioles. Furthermore, another data collection using scientific complementary metal-oxide semiconductor detector with a much shorter data acquisition time of 15 min provided similar results from the same samples. These results suggest a potential application of the compact laboratory-based X-ray microscope to analyze mouse renal biopsy.


Asunto(s)
Enfermedades Renales , Microscopía , Ratones , Animales , Rayos X
3.
Sci Rep ; 12(1): 9436, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35676517

RESUMEN

For three-dimensional observation of unstained bio-specimens using X-ray microscopy with computed tomography (CT), one main problem has been low contrast in X-ray absorption. Here we introduce paraffin-mediated contrast enhancement to visualize biopsy samples of mouse kidney using a laboratory-based X-tray microscope. Unlike conventional heavy-atom staining, paraffin-mediated contrast enhancement uses solid paraffin as a negative contrast medium to replace water in the sample. The medium replacement from water to paraffin effectively lowers the absorption of low-energy X-rays by the medium, which eventually enhances the absorption contrast between the medium and tissue. In this work, paraffin-mediated contrast enhancement with 8 keV laboratory X-rays was used to visualize cylindrical renal biopsies with diameters of about 0.5 mm. As a result, reconstructed CT images from 19.4 h of data collection achieved cellular-level resolutions in all directions, which provided 3D structures of renal corpuscles from a normal mouse and from a disease model mouse. These two structures with and without disease allowed a volumetric analysis showing substantial volume differences in glomerular subregions. Notably, this nondestructive method presents CT opacities reflecting elemental composition and density of unstained tissues, thereby allowing more unbiased interpretation on their biological structures.


Asunto(s)
Microscopía , Parafina , Animales , Riñón/diagnóstico por imagen , Ratones , Agua , Rayos X
4.
J Phys Chem B ; 126(5): 1004-1015, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35089040

RESUMEN

We have developed a methodology for identifying further thermostabilizing mutations for an intrinsically thermostable membrane protein. The methodology comprises the following steps: (1) identifying thermostabilizing single mutations (TSSMs) for residues in the transmembrane region using our physics-based method; (2) identifying TSSMs for residues in the extracellular and intracellular regions, which are in aqueous environment, using an empirical force field FoldX; and (3) combining the TSSMs identified in steps (1) and (2) to construct multiple mutations. The methodology is illustrated for thermophilic rhodopsin whose apparent midpoint temperature of thermal denaturation Tm is ∼91.8 °C. The TSSMs previously identified in step (1) were F90K, F90R, and Y91I with ΔTm ∼5.6, ∼5.5, and ∼2.9 °C, respectively, and those in step (2) were V79K, T114D, A115P, and A116E with ΔTm ∼2.7, ∼4.2, ∼2.6, and ∼2.3 °C, respectively (ΔTm denotes the increase in Tm). In this study, we construct triple and quadruple mutants, F90K+Y91I+T114D and F90K+Y91I+V79K+T114D. The values of ΔTm for these multiple mutants are ∼11.4 and ∼13.5 °C, respectively. Tm of the quadruple mutant (∼105.3 °C) establishes a new record in a class of outward proton pumping rhodopsins. It is higher than Tm of Rubrobacter xylanophilus rhodopsin (∼100.8 °C) that was the most thermostable in the class before this study.


Asunto(s)
Bombas de Protones , Rodopsina , Aminoácidos/genética , Mutación , Bombas de Protones/química , Protones , Rodopsina/genética
5.
Proteins ; 89(3): 301-310, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33064333

RESUMEN

It is known that a hyperthermostable protein tolerable at temperatures over 100°C can be designed from a soluble globular protein by introducing mutations. To expand the applicability of this technology to membrane proteins, here we report a further thermo-stabilization of the thermophilic rhodopsin from Thermus thermophilus JL-18 as a model membrane protein. Ten single mutations in the extramembrane regions were designed based on a computational prediction of folding free-energy differences upon mutation. Experimental characterizations using the UV-visible spectroscopy and the differential scanning calorimetry revealed that four of ten mutations were thermo-stabilizing: V79K, T114D, A115P, and A116E. The mutation-structure relationship of the TR constructs was analyzed using molecular dynamics simulations at 300 K and at 1800 K that aimed simulating structures in the native and in the random-coil states, respectively. The native-state simulation exhibited an ion-pair formation of the stabilizing V79K mutant as it was designed, and suggested a mutation-induced structural change of the most stabilizing T114D mutant. On the other hand, the random-coil-state simulation revealed a higher structural fluctuation of the destabilizing mutant S8D when compared to the wild type, suggesting that the higher entropy in the random-coil state deteriorated the thermal stability. The present thermo-stabilization design in the extramembrane regions based on the free-energy calculation and the subsequent evaluation by the molecular dynamics may be useful to improve the production of membrane proteins for structural studies.


Asunto(s)
Proteínas Bacterianas , Proteínas de la Membrana , Rodopsinas Microbianas , Thermus thermophilus/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Calor , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Rodopsinas Microbianas/química , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/metabolismo
6.
Plant Methods ; 16: 7, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32021643

RESUMEN

BACKGROUND: The visualization of internal 3D-structure of tissues at micron resolutions without staining by contrast reagents is desirable in plant researches, and it can be achieved by an X-ray computed tomography (CT) with a phase-retrieval technique. Recently, a laboratory-based X-ray microscope adopting the phase contrast CT was developed as a powerful tool for the observation of weakly absorbing biological samples. Here we report the observation of unstained pansy seeds using the laboratory-based X-ray phase-contrast CT. RESULTS: A live pansy seed within 2 mm in size was simply mounted inside a plastic tube and irradiated by in-house X-rays to collect projection images using a laboratory-based X-ray microscope. The phase-retrieval technique was applied to enhance contrasts in the projection images. In addition to a dry seed, wet seeds on germination with the poorer contrasts were tried. The phase-retrieved tomograms from both the dry and the wet seeds revealed a cellular level of spatial resolutions that were enough to resolve cells in the seeds, and provided enough contrasts to delineate the boundary of embryos manually. The manual segmentation allowed a 3D rendering of embryos at three different stages in the germination, which visualized an overall morphological change of the embryo upon germination as well as a spatial arrangement of cells inside the embryo. CONCLUSIONS: Our results confirmed an availability of the laboratory-based X-ray phase-contrast CT for a 3D-structural study on the development of small seeds. The present method may provide a unique way to observe live plant tissues at micron resolutions without structural perturbations due to the sample preparation.

7.
Bioresour Technol ; 276: 244-252, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30640018

RESUMEN

The present work describes the functional and structural characterization of adenine phosphoribosyltransferase 2 from Thermus thermophilus HB8 (TtAPRT2). The combination of structural and substrate specificity data provided valuable information for immobilization studies. Dimeric TtAPRT2 was immobilized onto glutaraldehyde-activated MagReSyn®Amine magnetic iron oxide porous microparticles by two different strategies: a) an enzyme immobilization at pH 8.5 to encourage the immobilization process by N-termini (MTtAPRT2A, MTtAPRT2B, MTtAPRT2C) or b) an enzyme immobilization at pH 10.0 to encourage the immobilization process through surface exposed lysine residues (MTtAPRT2D, MTtAPRT2E, MTtAPRT2F). According to catalyst load experiments, MTtAPRT2B (activity: 480 IU g-1biocatalyst, activity recovery: 52%) and MTtAPRT2F (activity: 507 IU g-1biocatalyst, activity recovery: 44%) were chosen as optimal derivatives. The biochemical characterization studies demonstrated that immobilization process improved the thermostability of TtAPRT2. Moreover, the potential reusability of MTtAPRT2B and MTtAPRT2F was also tested. Finally, MTtAPRT2F was employed in the synthesis of nucleoside-5'-monophosphate analogues.


Asunto(s)
Biocatálisis , Nucleósidos/biosíntesis , Estabilidad de Enzimas , Compuestos Férricos , Glutaral/química , Concentración de Iones de Hidrógeno , Magnetismo , Nanopartículas de Magnetita , Nucleósidos/química , Polímeros , Especificidad por Sustrato
8.
Anal Biochem ; 557: 46-58, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30025973

RESUMEN

It is known that the crystallizability of protein molecules may be improved by replacing their surface lysine residues with other residue types. Here an experimental method to identify surface lysine residues by NHS-biotin chemical modification combined with MALDI-TOF MS was proposed and was evaluated using PH1033 protein from Pyrococcus horikoshii. Interestingly, the biotinylation experiment with a protein-reagent molar ratio of 1:1 revealed that only seven of twenty-two lysine residues in the protein comprising 144 residues were labeled. To investigate the result, we analyzed structures from a molecular-dynamics simulation mimicking the experiment. A logistic regression analysis revealed that the biotinylation was significantly correlated with four factors relevant to the local environment of lysine residues: the solvent accessibility, the electrostatic energy, the number of hydrogen bonds, and the estimated pKa value. This result is overall in agreement with that from the same analysis on the crystal structure. However, reflecting the flexibility of the protein molecule in solution state, the factors except for the electrostatic energy were highly variable in the MD structures depending upon the protonation state of Tyr87. The present procedure of biotin-labeling can avoid lysine residues with extensive intramolecular interactions that are incompatible with the rational design of protein crystals.


Asunto(s)
Biotina/análogos & derivados , Lisina/análisis , Lisina/química , Simulación de Dinámica Molecular , Succinimidas/química , Biotina/química
9.
Biochemistry ; 57(18): 2649-2656, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29648806

RESUMEN

In order to elucidate the contribution of charged residues to protein stabilization at temperatures of over 100 °C, we constructed many mutants of the CutA1 protein ( EcCutA1) from Escherichia coli. The goal was to see if one can achieve the same stability as for a CutA1 from hyperthermophile Pyrococcus horikoshii that has the denaturation temperature near 150 °C. The hydrophobic mutant of EcCutA1 ( Ec0VV) with denaturation temperature ( Td) of 113.2 °C was used as a template for mutations. The highest Td of Ec0VV mutants substituted by a single charged residue was 118.4 °C. Multiple ion mutants were also constructed by combination of single mutants and found to have an increased thermostability. The highest stability of multiple mutants was a mutant substituted by nine charged residues that had a Td of 142.2 °C. To evaluate the energy of ion-ion interactions of mutant proteins, we used the structural ensemble obtained by a molecular dynamics simulation at 300 K. The Td of ionic mutants linearly increases with the increments of the computed energy of ion-ion interactions for ionic mutant proteins even up to the temperatures near 140 °C, suggesting that ion-ion interactions cumulatively contribute to the stabilization of a protein at high temperatures.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/química , Iones/química , Proteínas Mutantes/química , Secuencia de Aminoácidos/genética , Estabilidad de Enzimas , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Calor , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas Mutantes/genética , Conformación Proteica , Termodinámica
10.
Acta Crystallogr F Struct Biol Commun ; 73(Pt 12): 706-712, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29199993

RESUMEN

Methyltransferases (MTs) are enzymes involved in methylation that are needed to perform cellular processes such as biosynthesis, metabolism, gene expression, protein trafficking and signal transduction. The cofactor S-adenosyl-L-methionine (SAM) is used for catalysis by SAM-dependent methyltransferases (SAM-MTs). The crystal structure of Pyrococcus horikoshii SAM-MT was determined to a resolution of 2.1 Šusing X-ray diffraction. The monomeric structure consists of a Rossmann-like fold (domain I) and a substrate-binding domain (domain II). The cofactor (SAM) molecule binds at the interface between adjacent subunits, presumably near to the active site(s) of the enzyme. The observed dimeric state might be important for the catalytic function of the enzyme.


Asunto(s)
Metiltransferasas/química , Metiltransferasas/metabolismo , Pyrococcus horikoshii/enzimología , S-Adenosilmetionina/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Modelos Moleculares , Conformación Proteica , Dominios Proteicos
11.
Acta Crystallogr D Struct Biol ; 73(Pt 9): 757-766, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28876239

RESUMEN

An alternative rational approach to improve protein crystals by using single-site mutation of surface residues is proposed based on the results of a statistical analysis using a compiled data set of 918 independent crystal structures, thereby reflecting not only the entropic effect but also other effects upon protein crystallization. This analysis reveals a clear difference in the crystal-packing propensity of amino acids depending on the secondary-structural class. To verify this result, a systematic crystallization experiment was performed with the biotin carboxyl carrier protein from Pyrococcus horikoshii OT3 (PhBCCP). Six single-site mutations were examined: Ala138 on the surface of a ß-sheet was mutated to Ile, Tyr, Arg, Gln, Val and Lys. In agreement with prediction, it was observed that the two mutants (A138I and A138Y) harbouring the residues with the highest crystal-packing propensities for ß-sheet at position 138 provided better crystallization scores relative to those of other constructs, including the wild type, and that the crystal-packing propensity for ß-sheet provided the best correlation with the ratio of obtaining crystals. Two new crystal forms of these mutants were obtained that diffracted to high resolution, generating novel packing interfaces with the mutated residues (Ile/Tyr). The mutations introduced did not affect the overall structures, indicating that a ß-sheet can accommodate a successful mutation if it is carefully selected so as to avoid intramolecular steric hindrance. A significant negative correlation between the ratio of obtaining amorphous precipitate and the crystal-packing propensity was also found.


Asunto(s)
Acetil-CoA Carboxilasa/química , Proteínas Arqueales/química , Pyrococcus horikoshii/química , Acetil-CoA Carboxilasa/genética , Aminoácidos/química , Aminoácidos/genética , Proteínas Arqueales/genética , Cristalografía por Rayos X , Acido Graso Sintasa Tipo II/química , Acido Graso Sintasa Tipo II/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación Proteica , Estructura Secundaria de Proteína , Pyrococcus horikoshii/genética
12.
Acta Crystallogr D Struct Biol ; 73(Pt 8): 702-709, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28777085

RESUMEN

Serial femtosecond crystallography (SFX) with an X-ray free-electron laser is used for the structural determination of proteins from a large number of microcrystals at room temperature. To examine the feasibility of pharmaceutical applications of SFX, a ligand-soaking experiment using thermolysin microcrystals has been performed using SFX. The results were compared with those from a conventional experiment with synchrotron radiation (SR) at 100 K. A protein-ligand complex structure was successfully obtained from an SFX experiment using microcrystals soaked with a small-molecule ligand; both oil-based and water-based crystal carriers gave essentially the same results. In a comparison of the SFX and SR structures, clear differences were observed in the unit-cell parameters, in the alternate conformation of side chains, in the degree of water coordination and in the ligand-binding mode.


Asunto(s)
Cristalografía/métodos , Geobacillus stearothermophilus/química , Geobacillus stearothermophilus/enzimología , Termolisina/química , Cristalización/métodos , Cristalografía por Rayos X/métodos , Diseño de Fármacos , Geobacillus stearothermophilus/metabolismo , Ligandos , Modelos Moleculares , Conformación Proteica , Sincrotrones , Termolisina/metabolismo
13.
Proc Natl Acad Sci U S A ; 113(46): 13039-13044, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27799539

RESUMEN

The 3D structure determination of biological macromolecules by X-ray crystallography suffers from a phase problem: to perform Fourier transformation to calculate real space density maps, both intensities and phases of structure factors are necessary; however, measured diffraction patterns give only intensities. Although serial femtosecond crystallography (SFX) using X-ray free electron lasers (XFELs) has been steadily developed since 2009, experimental phasing still remains challenging. Here, using 7.0-keV (1.771 Å) X-ray pulses from the SPring-8 Angstrom Compact Free Electron Laser (SACLA), iodine single-wavelength anomalous diffraction (SAD), single isomorphous replacement (SIR), and single isomorphous replacement with anomalous scattering (SIRAS) phasing were performed in an SFX regime for a model membrane protein bacteriorhodopsin (bR). The crystals grown in bicelles were derivatized with an iodine-labeled detergent heavy-atom additive 13a (HAD13a), which contains the magic triangle, I3C head group with three iodine atoms. The alkyl tail was essential for binding of the detergent to the surface of bR. Strong anomalous and isomorphous difference signals from HAD13a enabled successful phasing using reflections up to 2.1-Å resolution from only 3,000 and 4,000 indexed images from native and derivative crystals, respectively. When more images were merged, structure solution was possible with data truncated at 3.3-Å resolution, which is the lowest resolution among the reported cases of SFX phasing. Moreover, preliminary SFX experiment showed that HAD13a successfully derivatized the G protein-coupled A2a adenosine receptor crystallized in lipidic cubic phases. These results pave the way for de novo structure determination of membrane proteins, which often diffract poorly, even with the brightest XFEL beams.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/química , Cristalización , Cristalografía/métodos , Detergentes/química , Electrones , Halobacterium , Rayos Láser , Conformación Proteica , Ácidos Triyodobenzoicos/química
14.
Sci Rep ; 5: 15545, 2015 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-26497062

RESUMEN

Although the thermodynamics of protein denaturation at temperatures over 100 °C is essential for the rational design of highly stable proteins, it is not understood well because of the associated technical difficulties. We designed certain hydrophobic mutant proteins of CutA1 from Escherichia coli, which have denaturation temperatures (Td) ranging from 101 to 113 °C and show a reversible heat denaturation. Using a hydrophobic mutant as a template, we successfully designed a hyperthermostable mutant protein (Td = 137 °C) by substituting six residues with charged ones. Thermodynamic analyses of these mutant proteins indicated that the hydrophobic mutants were stabilized by the accumulation of denaturation enthalpy (ΔH) with no entropic gain from hydrophobic solvation around 100 °C, and that the stabilization due to salt bridges resulted from both the increase in ΔH from ion-ion interactions and the entropic effect of the electrostatic solvation over 113 °C. This is the first experimental evidence that has successfully overcome the typical technical difficulties.


Asunto(s)
Proteínas de Escherichia coli/química , Desnaturalización Proteica , Termodinámica , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Calor , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo
15.
FEBS Open Bio ; 5: 557-70, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26199865

RESUMEN

Keap1 protein acts as a cellular sensor for oxidative stresses and regulates the transcription level of antioxidant genes through the ubiquitination of a corresponding transcription factor, Nrf2. A small molecule capable of binding to the Nrf2 interaction site of Keap1 could be a useful medicine. Here, we report two crystal structures, referred to as the soaking and the cocrystallization forms, of the Kelch domain of Keap1 with a small molecule, Ligand1. In these two forms, the Ligand1 molecule occupied the binding site of Keap1 so as to mimic the ETGE motif of Nrf2, although the mode of binding differed in the two forms. Because the Ligand1 molecule mediated the crystal packing in both the forms, the influence of crystal packing on the ligand binding was examined using a molecular dynamics (MD) simulation in aqueous conditions. In the MD structures from the soaking form, the ligand remained bound to Keap1 for over 20 ns, whereas the ligand tended to dissociate in the cocrystallization form. The MD structures could be classified into a few clusters that were related to but distinct from the crystal structures, indicating that the binding modes observed in crystals might be atypical of those in solution. However, the dominant ligand recognition residues in the crystal structures were commonly used in the MD structures to anchor the ligand. Therefore, the present structural information together with the MD simulation will be a useful basis for pharmaceutical drug development.

16.
J Biochem ; 157(3): 169-76, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25344844

RESUMEN

Unusually stable proteins are a disadvantage for the metabolic turnover of proteins in cells. The CutA1 proteins from Pyrococcus horikoshii and from Oryza sativa (OsCutA1) have unusually high denaturation temperatures (Td) of nearly 150 and 100 °C, respectively, at pH 7.0. It seemed that the CutA1 protein from the human brain (HsCutA1) also has a remarkably high stability. Therefore, the thermodynamic stabilities of HsCutA1 and its protease susceptibility were examined. The Td was remarkably high, being over 95 °C at pH 7.0. The unfolding Gibbs energy (ΔG(0)H2O) was 174 kJ/mol at 37 °C from the denaturant denaturation. The thermodynamic analysis showed that the unfolding enthalpy and entropy values of HsCutA1 were considerably lower than those of OsCutA1 with a similar stability to HsCutA1, which should be related to flexibility of the unstructured properties in both N- and C-terminals of HsCutA1. HsCutA1 was almost completely digested after 1-day incubation at 37 °C by subtilisin, although OsCutA1 was hardly digested at the same conditions. These results indicate that easily available fragmentation of HsCutA1 with remarkably high thermodynamic stability at the body temperature should be important for its protein catabolism in the human cells.


Asunto(s)
Proteínas de la Membrana/química , Secuencia de Aminoácidos , Encéfalo , Humanos , Datos de Secuencia Molecular , Replegamiento Proteico , Estabilidad Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Desplegamiento Proteico , Proteolisis , Homología de Secuencia de Aminoácido , Subtilisina/química , Termodinámica
17.
Biochem Biophys Res Commun ; 451(1): 126-30, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25065739

RESUMEN

In the L-Serine biosynthesis, D-3-phosphoglycerate dehydrogenase (PGDH) catalyzes the inter-conversion of D-3-phosphoglycerate to phosphohydroxypyruvate. PGDH belongs to 2-hydroxyacid dehydrogenases family. We have determined the crystal structures of PGDH from Sulfolobus tokodaii (StPGDH) and Pyrococcus horikoshii (PhPGDH) using X-ray diffraction to resolution of 1.77Å and 1.95Å, respectively. The PGDH protomer from both species exhibits identical structures, consisting of substrate binding domain and nucleotide binding domain. The residues and water molecules interacting with the NAD are identified. The catalytic triad residues Glu-His-Arg are highly conserved. The residues involved in the dimer interface and the structural features responsible for thermostability are evaluated. Overall, structures of PGDHs with two domains and histidine at the active site are categorized as type IIIH and such PGDHs structures having this type are reported for the first time.


Asunto(s)
Fosfoglicerato-Deshidrogenasa/química , Pyrococcus horikoshii/enzimología , Sulfolobus/enzimología , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Estabilidad de Enzimas , Modelos Moleculares , NAD/metabolismo , Fosfoglicerato-Deshidrogenasa/genética , Fosfoglicerato-Deshidrogenasa/metabolismo , Conformación Proteica , Multimerización de Proteína
18.
Biochem Biophys Res Commun ; 449(1): 107-13, 2014 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-24832735

RESUMEN

NADP(+) dependent isocitrate dehydrogenase (IDH) is an enzyme catalyzing oxidative decarboxylation of isocitrate into oxalosuccinate (intermediate) and finally the product α-ketoglutarate. The crystal structure of Thermus thermophilus isocitrate dehydrogenase (TtIDH) ternary complex with citrate and cofactor NADP(+) was determined using X-ray diffraction method to a resolution of 1.80 Å. The overall fold of this protein was resolved into large domain, small domain and a clasp domain. The monomeric structure reveals a novel terminal domain involved in dimerization, very unique and novel domain when compared to other IDH's. And, small domain and clasp domain showing significant differences when compared to other IDH's of the same sub-family. The structure of TtIDH reveals the absence of helix at the clasp domain, which is mainly involved in oligomerization in other IDH's. Also, helices/beta sheets are absent in the small domain, when compared to other IDH's of the same sub family. The overall TtIDH structure exhibits closed conformation with catalytic triad residues, Tyr144-Asp248-Lys191 are conserved. Oligomerization of the protein is quantized using interface area and subunit-subunit interactions between protomers. Overall, the TtIDH structure with novel terminal domain may be categorized as a first structure of subfamily of type IV.


Asunto(s)
Isocitrato Deshidrogenasa/química , Isocitrato Deshidrogenasa/ultraestructura , Modelos Químicos , Modelos Moleculares , Thermus thermophilus/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Simulación por Computador , Cristalización , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína
19.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 4): 994-1004, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24699644

RESUMEN

2-Keto-3-deoxygluconate (KDG) is one of the important intermediates in pectin metabolism. An enzyme involved in this pathway, 3-dehydro-3-deoxy-D-gluconate 5-dehydrogenase (DDGDH), has been identified which converts 2,5-diketo-3-deoxygluconate to KDG. The enzyme is a member of the short-chain dehydrogenase (SDR) family. To gain insight into the function of this enzyme at the molecular level, the first crystal structure of DDGDH from Thermus thermophilus HB8 has been determined in the apo form, as well as in complexes with the cofactor and with citrate, by X-ray diffraction methods. The crystal structures reveal a tight tetrameric oligomerization. The secondary-structural elements and catalytically important residues of the enzyme were highly conserved amongst the proteins of the NAD(P)-dependent SDR family. The DDGDH protomer contains a dinucleotide-binding fold which binds the coenzyme NAD(+) in an intersubunit cleft; hence, the observed oligomeric state might be important for the catalytic function. This enzyme prefers NAD(H) rather than NADP(H) as the physiological cofactor. A structural comparison of DDGDH with mouse lung carbonyl reductase suggests that a significant difference in the α-loop-α region of this enzyme is associated with the coenzyme specificity. The structural data allow a detailed understanding of the functional role of the conserved catalytic triad (Ser129-Tyr144-Lys148) in cofactor and substrate recognition, thus providing substantial insights into DDGDH catalysis. From analysis of the three-dimensional structure, intersubunit hydrophobic interactions were found to be important for enzyme oligomerization and thermostability.


Asunto(s)
Oxidorreductasas/química , Thermus thermophilus/enzimología , Secuencia de Aminoácidos , Modelos Moleculares , Datos de Secuencia Molecular , NAD/química , NAD/metabolismo , Oxidorreductasas/metabolismo , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología Estructural de Proteína , Especificidad por Sustrato
20.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 5): 838-42, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23633593

RESUMEN

X-ray free-electron lasers (FELs) enable crystallographic data collection using extremely bright femtosecond pulses from microscopic crystals beyond the limitations of conventional radiation damage. This diffraction-before-destruction approach requires a new crystal for each FEL shot and, since the crystals cannot be rotated during the X-ray pulse, data collection requires averaging over many different crystals and a Monte Carlo integration of the diffraction intensities, making the accurate determination of structure factors challenging. To investigate whether sufficient accuracy can be attained for the measurement of anomalous signal, a large data set was collected from lysozyme microcrystals at the newly established `multi-purpose spectroscopy/imaging instrument' of the SPring-8 Ångstrom Compact Free-Electron Laser (SACLA) at RIKEN Harima. Anomalous difference density maps calculated from these data demonstrate that serial femtosecond crystallography using a free-electron laser is sufficiently accurate to measure even the very weak anomalous signal of naturally occurring S atoms in a protein at a photon energy of 7.3 keV.


Asunto(s)
Cristalografía por Rayos X/métodos , Rayos Láser , Conformación Proteica , Azufre/química , Cristalografía por Rayos X/instrumentación , Cisteína/química , Modelos Moleculares , Muramidasa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...