Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(13)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-39000627

RESUMEN

Mass spectroscopy (MS) is a robust technique for polymer characterization, and it can provide the chemical fingerprint of a complete sample regarding polymer distribution chains. Nevertheless, polymer chemical properties such as polydispersity (Pd), average molecular mass (Mn), weight average molecular mass (Mw) and others are not determined by MS, as they are commonly characterized by gel permeation chromatography (GPC). In order to calculate polymer properties from MS, a Python script was developed to interpret polymer properties from spectroscopic raw data. Polypy script can be considered a peak detection and area distribution method, and represents the result of combining the MS raw data filtered using Root Mean Square (RMS) calculation with molecular classification based on theoretical molar masses. Polypy filters out areas corresponding to repetitive units. This approach facilitates the identification of the polymer chains and calculates their properties. The script also integrates visualization graphic tools for data analysis. In this work, aryl resin (poly(2,2-bis(4-oxy-(2-(methyloxirane)phenyl)propan) was the study case polymer molecule, and is composed of oligomer chains distributed mainly in the range of dimers to tetramers, in some cases presenting traces of pentamers and hexamers in the distribution profile of the oligomeric chains. Epoxy resin has Mn = 607 Da, Mw = 631 Da, and polydispersity (Pd) of 1.015 (data given by GPC). With Polypy script, calculations resulted in Mn = 584.42 Da, Mw = 649.29 Da, and Pd = 1.11, which are consistent results if compared with GPC characterization. Additional information, such as the percentage of oligomer distribution, was also calculated and for this polymer matrix it was not possible to retrieve it from the GPC method. Polypy is an approach to characterizing major polymer chemical properties using only MS raw spectra, and it can be utilized with any MS raw data for any polymer matrix.

2.
Polymers (Basel) ; 14(16)2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36015668

RESUMEN

An aerosol jet printing (AJP) printing head built on top of precise motion systems can provide positioning deviation down to 3 µm, printing areas as large as 20 cm × 20 cm × 30 cm, and five-axis freedom of movement. Typical uses of AJP are 2D printing on complex or flexible substrates, primarily for applications in printed electronics. Nearly all commercially available AJP inks for 2D printing are designed and optimized to reach desired electronic properties. In this work, we explore AJP for the 3D printing of free-standing pillar arrays. We utilize aryl epoxy photopolymer as ink coupled with a cross-linking "on the fly" technique. Pillar structures 550 µm in height and with a diameter of 50 µm were 3D printed. Pillar structures were characterized via scanning electron microscopy, where the morphology, number of printed layers and side effects of the AJP technique were investigated. Satellite droplets and over-spray seem to be unavoidable for structures smaller than 70 µm. Nevertheless, reactive ion etching (RIE) as a post-processing step can mitigate AJP side effects. AJP-RIE together with photopolymer-based ink can be promising for the 3D printing of microstructures, offering fast and maskless manufacturing without wet chemistry development and heat treatment post-processing.

3.
Opt Express ; 30(6): 8494-8509, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35299301

RESUMEN

This paper reports on the fabrication and characterization of an inverted Hartmann mask and its application for multi-contrast X-ray imaging of polymer composite material in a laboratory setup. Hartmann masks open new possibilities for high-speed X-ray imaging, obtaining orientation-independent information on internal structures without rotating the object. The mask was manufactured with deep X-ray lithography and gold electroplating on a low-absorbing polyimide substrate. Such an approach allows us to produce gratings with a small period and high aspect ratio, leading to a higher spatial resolution and extension towards higher X-ray energies. Tuning the manufacturing process, we achieved a homogeneous patterned area without supporting structures, thus avoiding losses on visibility. We tested mask performance in a laboratory setup with a conventional flat panel detector and assessed mask imaging capabilities using a tailored phantom sample of various sizes. We performed multi-modal X-ray imaging of epoxy matrix polymer composites reinforced with glass fibers and containing microcapsules filled with a healing agent. Hartmann masks made by X-ray lithography enabled fast-tracking of structural changes in low absorbing composite materials and of a self-healing mechanism triggered by mechanical stress.

4.
Polymers (Basel) ; 14(1)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35012231

RESUMEN

Biodiesel production from first-generation feedstock has shown a strong correlation with the increase in deforestation and the necessity of larger areas for land farming. Recent estimation from the European Federation for Transport and Environment evidenced that since the 2000s decade, an area equal to the Netherlands was deforested to supply global biodiesel demand, mainly originating from first-generation feedstock. Nevertheless, biodiesel is renewable, and it can be a greener source of energy than petroleum. A promising approach to make biodiesel independent from large areas of farming is to shift as much as possible the biodiesel production chain to second and third generations of feedstock. The second generation presents three main advantages, where it does not compete with the food industry, its commercial value is negligible, or none, and its usage as feedstock for biodiesel production reduces the overall waste disposal. In this manuscript, we present an oligomeric catalyst designed to be multi-functional for second-generation feedstock transesterification reactions, mainly focusing our efforts to optimize the conversion of tallow fat and sauteing oil to FAME and FAEE, applying our innovative catalyst. Named as Oligocat, our catalyst acts as a Brønsted-Lowry acid catalyst, providing protons to the reaction medium, and at the same time, with the course of the reaction, it sequesters glycerol molecules from the medium and changes its physical phase during the transesterification reaction. With this set of properties, Oligocat presents a pseudo-homogenous behavior, reducing the purification and separation steps of the biodiesel process production. Reaction conditions were optimized applying a 42 factorial planning. The output parameter evaluated was the conversion rate of triacylglycerol to mono alkyl esters, measured through gel permeation chromatography (GPC). After the optimization studies, a conversion yield of 96.7 (±1.9) wt% was achieved, which allows classifying the obtained mono alkyl esters as biodiesel by ASTM D6751 or EN 14214:2003. After applying the catalyst in three reaction cycles, Oligocat still presented a conversion rate above 96.5 wt% and as well an excellent recovery rate.

5.
J Imaging ; 7(11)2021 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-34821852

RESUMEN

We present the application of single-shot multicontrast X-ray imaging with an inverted Hartmann mask to the time-resolved in situ visualization of chemical reaction products. The real-time monitoring of an illustrative chemical reaction indicated the formation of the precipitate by the absorption, differential phase, and scattering contrast images obtained from a single projection. Through these contrast channels, the formation of the precipitate along the mixing line of the reagents, the border between the solid and the solution, and the presence of the scattering structures of 100-200 nm sizes were observed. The measurements were performed in a flexible and robust setup, which can be tailored to various imaging applications at different time scales.

6.
Polymers (Basel) ; 14(1)2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35012043

RESUMEN

With the increase in global demand for biodiesel, first generation feedstock has drawn the attention of governmental institutions due to the correlation with large land farming areas. The second and third feedstock generations are greener feedstock sources, nevertheless, they require different catalytic conditions if compared with first generation feedstock. In this work, we present the synthesis and characterization of oligoesters matrices and their functionalization to act as a pseudo-homogeneous acid catalyst for biodiesel production, named Oligocat. The main advantage of Oligocat is given due to its reactional medium interaction. Initially, oligocat is a solid catalyst soluble in the alcoholic phase, acting as a homogeneous catalyst, providing better mass transfer of the catalytic groups to the reaction medium, and as the course of the reaction happens, Oligocat migrates to the glycerol phase, also providing the advantage of easy separation of the biodiesel. Oligocat was synthesized through polymerization of aromatic hydroxy acids, followed by a chemical functionalization applying the sulfonation technique. Characterization of the catalysts was carried out by infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC), and thermogravimetric analysis (TGA). The synthesized oligomers presented 5357 g·mol-1 (Mw) and 3909 g·mol-1 (Mn), with a moderate thermal resistance of approximately 175 °C. By sulfonation reaction, it was possible to obtain a high content of sulphonic groups of nearly 70 mol%, which provided the catalytic activity to the oligomeric matrix. With the mentioned physical-chemical properties, Oligocat is chemically designed to convert second generation feedstock to biodiesel efficiently. Preliminary investigation using Oligocat for biodiesel production resulted in conversion rates higher than 96.5 wt.%.

7.
Polymers (Basel) ; 12(10)2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33066642

RESUMEN

Photoresists (or photo-resins) are the main and most important raw material used for lithography techniques such as deep X-ray (DXRL), ultraviolet (UVL), deep-UV (DUVL), and extreme UV (EUVL). In previous work, we showed how complicated could be the synthesis of the resins used to produce photoresist. In this study, we follow up on the strategy of tuning deep and macro levels of properties to formulate photo-resins. They were developed from a primary basis, using epoxy resins, a solvent, and a photoinitiator in several concentrations. The formulations were evaluated initially by the UVL technique, using a squared pattern of 2.3 mm2. The most suitable compositions were then studied in a pattern structure varying from 50 down to 1 µm width, applying UVL and DUVL. The patterned structures were compared with the chemical composition of the photo-resins. Considering the deep level of properties, polydispersion, and epoxidation degree were evaluated. Regarding the macro level of properties, the concentration of photoinitiator was studied. Promising results have been achieved with the control of the deep and macro levels methodology. By means of UV lithography, it was possible to note, for a large feature size above 2.0 mm2, the formulations presented good quality structures with a broad range of epoxidation degrees and photoinitiator concentrations, respectively from 3 to 100% (mol·molpolymer-1) and from 10 to 40% (mol·molpolymer-1). For structures smaller than 50 µm width, the composition of the photo-resins may be restricted to a narrow range of values regarding the formulation. The results indicate that the polydispersion of the oligomers might be a significant property to control. There is a tendency to better outcome with a low polydispersity (resins P1 and P2). Regarding UV and deep-UV irradiation, the best results were achieved with UV. Nevertheless, for DUV, the sensitivity seems to be more intense, leading to well-defined structures with over-exposure effects.

8.
J Synchrotron Radiat ; 27(Pt 3): 788-795, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32381782

RESUMEN

Different approaches of 2D lens arrays as Shack-Hartmann sensors for hard X-rays are compared. For the first time, a combination of Shack-Hartmann sensors for hard X-rays (SHSX) with a super-resolution imaging approach to perform multi-contrast imaging is demonstrated. A diamond lens is employed as a well known test object. The interleaving approach has great potential to overcome the 2D lens array limitation given by the two-photon polymerization lithography. Finally, the radiation damage induced by continuous exposure of an SHSX prototype with a white beam was studied showing a good performance of several hours. The shape modification and influence in the final image quality are presented.

9.
Polymers (Basel) ; 11(9)2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31500104

RESUMEN

One of the types of negative tone photoresists is composed of at least a catalyst, a solvent, and epoxy resin. This is the primary raw material for lithography technology. To ensure high-quality pattern transfer in the lithography process, it is crucial to control the properties of the photoresist. In this work, a set of resins based on Bisphenol-A were synthesized. The obtained resins have been characterized regarding the chain size and its derivative products. As a second step, an epoxidation reaction was performed and the epoxy groups were quantified. The profile of the resins, obtained by mass spectroscopy (ESI-µ-TOF-MS), showed that it is possible to tune the chain sizes of the polymers and their derivate by controlling the parameters of the polymerization reaction. Three profiles of resins were achieved in this study. Nuclear magnetic resonance (NMR) indicates an epoxidation in the range of 96%, when comparing the phenolic peak intensity before and after the reaction. Differential Scan Calorimetry (DSC) measurements confirmed the different oligomer profiles of resins, showing different glass transition temperatures.

10.
Opt Lett ; 44(9): 2306-2309, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31042210

RESUMEN

In this Letter, we present the application of the inverted Hartmann mask for time-resolved single-shot phase-contrast x-ray imaging. The inverted Hartmann mask is a periodic array of free-standing gold pillars. The array is manufactured by UV lithography and electroplating. Time-resolved measurements are performed for imaging of pulsed laser ablation in liquids using white-beam synchrotron radiation. The inverted Hartmann mask in combination with a single-shot imaging technique provides sufficient differential phase contrast even at very short exposure times. It can be effectively used for phase-contrast x-ray imaging of fast dynamic processes with temporal resolution on the millisecond scale.

11.
Sci Rep ; 7(1): 4807, 2017 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-28684858

RESUMEN

X-ray chest radiography is an inexpensive and broadly available tool for initial assessment of the lung in clinical routine, but typically lacks diagnostic sensitivity for detection of pulmonary diseases in their early stages. Recent X-ray dark-field (XDF) imaging studies on mice have shown significant improvements in imaging-based lung diagnostics. Especially in the case of early diagnosis of chronic obstructive pulmonary disease (COPD), XDF imaging clearly outperforms conventional radiography. However, a translation of this technique towards the investigation of larger mammals and finally humans has not yet been achieved. In this letter, we present the first in-vivo XDF full-field chest radiographs (32 × 35 cm2) of a living pig, acquired with clinically compatible parameters (40 s scan time, approx. 80 µSv dose). For imaging, we developed a novel high-energy XDF system that overcomes the limitations of currently established setups. Our XDF radiographs yield sufficiently high image quality to enable radiographic evaluation of the lungs. We consider this a milestone in the bench-to-bedside translation of XDF imaging and expect XDF imaging to become an invaluable tool in clinical practice, both as a general chest X-ray modality and as a dedicated tool for high-risk patients affected by smoking, industrial work and indoor cooking.


Asunto(s)
Pulmón/diagnóstico por imagen , Radiografía Torácica/métodos , Tomografía Computarizada por Rayos X/métodos , Animales , Interpretación de Imagen Asistida por Computador/estadística & datos numéricos , Masculino , Radiografía Torácica/instrumentación , Porcinos , Tomografía Computarizada por Rayos X/instrumentación
13.
Rev Sci Instrum ; 88(1): 015104, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28147659

RESUMEN

X-ray grating-based interferometry promises unique new diagnostic possibilities in medical imaging and materials analysis. To transfer this method from scientific laboratories or small-animal applications to clinical radiography applications, compact setups with a large field of view (FoV) are required. Currently the FoV is limited by the grating area, which is restricted due to the complex manufacturing process. One possibility to increase the FoV is tiling individual grating tiles to create one large area grating mounted on a carrier substrate. We investigate theoretically the accuracy needed for a tiling process in all degrees of freedom by applying a simulation approach. We show how the resulting precision requirements can be met using a custom-built frame for exact positioning. Precise alignment is achieved by comparing the fringe patterns of two neighboring grating tiles in a grating interferometer. With this method, the FoV can be extended to practically any desired length in one dimension. First results of a phase-contrast scanning setup with a full FoV of 384 mm × 24 mm show the suitability of this method.

14.
Opt Express ; 24(9): 9168-77, 2016 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-27137533

RESUMEN

Refractive X-ray lenses are in use at a large number of synchrotron experiments. Several materials and fabrication techniques are available for their production, each having their own strengths and drawbacks. We present a grating interferometer for the quantitative analysis of single refractive X-ray lenses and employ it for the study of a beryllium point focus lens and a polymer line focus lens, highlighting the differences in the outcome of the fabrication methods. The residuals of a line fit to the phase gradient are used to quantify local lens defects, while shape aberrations are quantified by the decomposition of the retrieved wavefront phase profile into either Zernike or Legendre polynomials, depending on the focus and aperture shape. While the polymer lens shows better material homogeneity, the beryllium lens shows higher shape accuracy.

15.
Phys Med Biol ; 61(9): 3427-42, 2016 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-27046451

RESUMEN

The x-ray dark-field contrast accessible via grating interferometry is sensitive to features at length scales well below what is resolvable by a detector system. It is commonly explained as arising from small-angle x-ray scattering (SAXS), and can be implemented both at synchrotron beamlines and with low-brilliance sources such as x-ray tubes. Here, we demonstrate that for tube based setups the underlying process of image formation can be fundamentally different. For focal spots or detector pixels that comprise multiple grating periods, we show that dark-field images contain a strong artificial and system-specific component not arising from SAXS. Based on experiments carried out with a nanofocus x-ray tube and the example of an excised rat lung, we demonstrate that the dark-field contrast observed for porous media transforms into a differential phase contrast for large geometric magnifications. Using a photon counting detector with an adjustable point spread function, we confirm that a dark-field image can indeed be formed by an intra-pixel differential phase contrast that cannot be resolved as such due to a dephasing between the periodicities of the absorption grating and the Talbot carpet. Our findings are further corroborated by a link between the strength of this pseudo-dark-field contrast and our x-ray tube's focal spot size in a three-grating setup. These results must not be ignored when measurements are intended to be reproducible across systems.


Asunto(s)
Corazón/diagnóstico por imagen , Interferometría/métodos , Pulmón/diagnóstico por imagen , Microscopía de Contraste de Fase/métodos , Dispersión del Ángulo Pequeño , Tráquea/diagnóstico por imagen , Difracción de Rayos X/métodos , Animales , Fotones , Ratas , Ratas Sprague-Dawley
16.
Sci Rep ; 6: 24022, 2016 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-27040492

RESUMEN

The possibility to perform high-sensitivity X-ray phase-contrast imaging with laboratory grating-based phase-contrast computed tomography (gbPC-CT) setups is of great interest for a broad range of high-resolution biomedical applications. However, achieving high sensitivity with laboratory gbPC-CT setups still poses a challenge because several factors such as the reduced flux, the polychromaticity of the spectrum, and the limited coherence of the X-ray source reduce the performance of laboratory gbPC-CT in comparison to gbPC-CT at synchrotron facilities. In this work, we present our laboratory X-ray Talbot-Lau interferometry setup operating at 40 kVp and describe how we achieve the high sensitivity yet unrivalled by any other laboratory X-ray phase-contrast technique. We provide the angular sensitivity expressed via the minimum resolvable refraction angle both in theory and experiment, and compare our data with other differential phase-contrast setups. Furthermore, we show that the good stability of our high-sensitivity setup allows for tomographic scans, by which even the electron density can be retrieved quantitatively as has been demonstrated in several preclinical studies.


Asunto(s)
Cerebelo/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Humanos , Interferometría
17.
Phys Med Biol ; 61(2): 527-41, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26683256

RESUMEN

X-ray grating interferometry is one among various methods that allow extracting the so-called phase and visibility contrasts in addition to the well-known transmission images. Crucial to achieving a high image quality are the absorption gratings employed. Here, we present an in-depth analysis of how the grating type and lamella heights influence the final images. Benchmarking gratings of two different designs, we show that a frequently used proxy for image quality, a grating's so-called visibility, is insufficient to predict contrast-to-noise ratios (CNRs). Presenting scans from an excised rat lung, we demonstrate that the CNRs obtained for transmission and visibility images anti-correlate. This is explained by the stronger attenuation implied by gratings that are engineered to provide high visibilities by means of an increased lamella height. We show that even the visibility contrast can suffer from this effect when the associated reduced photon flux on the detector is not outweighed by a corresponding gain in visibility. Resulting in an inevitable trade-off between the quality of the two contrasts, the question of how an optimal grating should be designed can hence only be answered in terms of Pareto optimality.


Asunto(s)
Intensificación de Imagen Radiográfica/métodos , Rayos X , Absorción de Radiación , Animales , Interferometría/métodos , Pulmón/diagnóstico por imagen , Ratas
18.
Phys Med ; 30(3): 374-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24518822

RESUMEN

We report on the first experimental results of helical differential phase-contrast computed tomography (helical DPC-CT) with a laboratory X-ray tube source and a Talbot-Lau grating interferometer. The results experimentally verify the feasibility of helical data acquisition and reconstruction in phase-contrast imaging, in analogy to its use in clinical CT systems. This allows fast and continuous volumetric scans for long objects with lengths exceeding the dimension of the detector. Since helical CT revolutionized the field of medical CT several years ago, we anticipate that this method will bring the same significant impact on the future medical and industrial applications of X-ray DPC-CT.


Asunto(s)
Tomografía Computarizada Espiral/métodos , Interferometría , Tomografía Computarizada Espiral/instrumentación
19.
Opt Express ; 22(1): 547-56, 2014 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-24515015

RESUMEN

X-ray imaging using a Talbot-Lau interferometer, consisting of three binary gratings, is a well-established approach to acquire x-ray phase-contrast and dark-field images with a polychromatic source. However, challenges in the production of high aspect ratio gratings limit the construction of a compact setup for high x-ray energies. In this study we consider the use of phase gratings with triangular-shaped structures in an x-ray interferometer and show that such gratings can yield high visibilities for significantly shorter propagation distances than conventional gratings with binary structures. The findings are supported by simulation and experimental results for both cases of a monochromatic and a polychromatic source.


Asunto(s)
Interferometría/instrumentación , Iluminación/instrumentación , Refractometría/instrumentación , Difracción de Rayos X/instrumentación , Simulación por Computador , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA