Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Entropy (Basel) ; 23(4)2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33918050

RESUMEN

The thymus hosts the development of a specific type of adaptive immune cells called T cells. T cells orchestrate the adaptive immune response through recognition of antigen by the highly variable T-cell receptor (TCR). T-cell development is a tightly coordinated process comprising lineage commitment, somatic recombination of Tcr gene loci and selection for functional, but non-self-reactive TCRs, all interspersed with massive proliferation and cell death. Thus, the thymus produces a pool of T cells throughout life capable of responding to virtually any exogenous attack while preserving the body through self-tolerance. The thymus has been of considerable interest to both immunologists and theoretical biologists due to its multi-scale quantitative properties, bridging molecular binding, population dynamics and polyclonal repertoire specificity. Here, we review experimental strategies aimed at revealing quantitative and dynamic properties of T-cell development and how they have been implemented in mathematical modeling strategies that were reported to help understand the flexible dynamics of the highly dividing and dying thymic cell populations. Furthermore, we summarize the current challenges to estimating in vivo cellular dynamics and to reaching a next-generation multi-scale picture of T-cell development.

2.
Sci Rep ; 10(1): 21438, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33293632

RESUMEN

A network of gene regulatory factors such as transcription factors and microRNAs establish and maintain gene expression patterns during hematopoiesis. In this network, transcription factors regulate each other and are involved in regulatory loops with microRNAs. The microRNA cluster miR-17-92 is located within the MIR17HG gene and encodes six mature microRNAs. It is important for hematopoietic differentiation and plays a central role in malignant disease. However, the transcription factors downstream of miR-17-92 are largely elusive and the transcriptional regulation of miR-17-92 is not fully understood. Here we show that miR-17-92 forms a regulatory loop with the transcription factor TAL1. The miR-17-92 cluster inhibits expression of TAL1 and indirectly leads to decreased stability of the TAL1 transcriptional complex. We found that TAL1 and its heterodimerization partner E47 regulate miR-17-92 transcriptionally. Furthermore, miR-17-92 negatively influences erythroid differentiation, a process that depends on gene activation by the TAL1 complex. Our data give example of how transcription factor activity is fine-tuned during normal hematopoiesis. We postulate that disturbance of the regulatory loop between TAL1 and the miR-17-92 cluster could be an important step in cancer development and progression.


Asunto(s)
Células Eritroides/citología , MicroARNs/genética , Proteína 1 de la Leucemia Linfocítica T Aguda/genética , Proteína 1 de la Leucemia Linfocítica T Aguda/metabolismo , Retroalimentación Fisiológica , Regulación de la Expresión Génica , Células HEK293 , Hematopoyesis , Humanos , Células Jurkat , Células K562 , Estabilidad Proteica , ARN Largo no Codificante , Proteína 1 de la Leucemia Linfocítica T Aguda/química , Factor de Transcripción 3/metabolismo , Activación Transcripcional
3.
Front Immunol ; 11: 2185, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013919

RESUMEN

MicroRNAs (miRNAs) have emerged as critical posttranscriptional regulators of the immune system, including function and development of regulatory T (Treg) cells. Although this critical role has been firmly demonstrated through genetic models, key mechanisms of miRNA function in vivo remain elusive. Here, we review the role of miRNAs in Treg cell development and function. In particular, we focus on the question what the study of miRNAs in this context reveals about miRNA biology in general, including context-dependent function and the role of individual targets vs. complex co-targeting networks. In addition, we highlight potential technical pitfalls and state-of-the-art approaches to improve the mechanistic understanding of miRNA biology in a physiological context.


Asunto(s)
MicroARNs/genética , Linfocitos T Reguladores/fisiología , Animales , Diferenciación Celular/genética , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Activación de Linfocitos/genética
4.
Pharmaceutics ; 11(10)2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31618895

RESUMEN

Drug hypersensitivity reactions that resemble acute immune reactions are linked to certain human leucocyte antigen (HLA) alleles. Severe and life-threatening Stevens Johnson Syndrome and Toxic Epidermal Necrolysis following treatment with the antiepileptic and psychotropic drug Carbamazepine are associated with HLA-B*15:02; whereas carriers of HLA-A*31:01 develop milder symptoms. It is not understood how these immunogenic differences emerge genotype-specific. For HLA-B*15:02 an altered peptide presentation has been described following exposure to the main metabolite of carbamazepine that is binding to certain amino acids in the F pocket of the HLA molecule. The difference in the molecular mechanism of these diseases has not been comprehensively analyzed, yet; and is addressed in this study. Soluble HLA-technology was utilized to examine peptide presentation of HLA-A*31:01 in presence and absence of carbamazepine and its main metabolite and to examine the mode of peptide loading. Proteome analysis of drug-treated and untreated cells was performed. Alterations in sA*31:01-presented peptides after treatment with carbamazepine revealed different half-life times of peptide-HLA- or peptide-drug-HLA complexes. Together with observed changes in the proteome elicited through carbamazepine or its metabolite these results illustrate the mechanistic differences in carbamazepine hypersensitivity for HLA-A*31:01 or B*15:02 patients and constitute the bridge between pharmacology and pharmacogenetics for personalized therapeutics.

5.
HLA ; 94(1): 25-38, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30912293

RESUMEN

T-cell receptors possess the unique ability to survey and respond to their permanently modified ligands, self HLA-I molecules bound to non-self peptides of various origin. This highly specific immune function is impaired following hematopoietic stem cell transplantation (HSCT) for a timespan of several months needed for the maturation of T-cells. Especially, the progression of HCMV disease in immunocompromised patients induces life-threatening situations. Therefore, the need for a new immune system that delivers vital and potent CD8+ T-cells carrying TCRs that recognize even one human cytomegalovirus (HCMV) peptide/HLA molecule and clear the viral infection long term becomes obvious. The transcription and translation of HCMV proteins in the lytic cycle is a precisely regulated cascade of processes, therefore, it is a highly sensitive challenge to adjust the exact time point of HCMV-peptide recruitment over self-peptides. We utilized soluble HLA technology in HCMV-infected fibroblasts and sequenced naturally sHLA-A*24:02 presented HCMV-derived peptides. One peptide of 14 AAs length derived from the IE2 antigen induced the strongest T-cell responses; this peptide can be detected with a low ranking score in general peptide prediction databanks. These results highlight the need for elaborate and HLA-allele specific peptide selection.


Asunto(s)
Antígenos Virales/inmunología , Infecciones por Citomegalovirus/inmunología , Citomegalovirus/inmunología , Antígeno HLA-A24/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Fragmentos de Péptidos/inmunología , Linfocitos T Citotóxicos/inmunología , Alelos , Presentación de Antígeno , Linfocitos T CD8-positivos/inmunología , Células Cultivadas , Infecciones por Citomegalovirus/prevención & control , Infecciones por Citomegalovirus/virología , Fibroblastos/inmunología , Trasplante de Células Madre Hematopoyéticas , Humanos
6.
PLoS Biol ; 17(3): e2006716, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30856173

RESUMEN

The interdependence of selective cues during development of regulatory T cells (Treg cells) in the thymus and their suppressive function remains incompletely understood. Here, we analyzed this interdependence by taking advantage of highly dynamic changes in expression of microRNA 181 family members miR-181a-1 and miR-181b-1 (miR-181a/b-1) during late T-cell development with very high levels of expression during thymocyte selection, followed by massive down-regulation in the periphery. Loss of miR-181a/b-1 resulted in inefficient de novo generation of Treg cells in the thymus but simultaneously permitted homeostatic expansion in the periphery in the absence of competition. Modulation of T-cell receptor (TCR) signal strength in vivo indicated that miR-181a/b-1 controlled Treg-cell formation via establishing adequate signaling thresholds. Unexpectedly, miR-181a/b-1-deficient Treg cells displayed elevated suppressive capacity in vivo, in line with elevated levels of cytotoxic T-lymphocyte-associated 4 (CTLA-4) protein, but not mRNA, in thymic and peripheral Treg cells. Therefore, we propose that intrathymic miR-181a/b-1 controls development of Treg cells and imposes a developmental legacy on their peripheral function.


Asunto(s)
MicroARNs/metabolismo , Linfocitos T Reguladores/metabolismo , Animales , Citometría de Flujo , Ratones , Ratones Noqueados , MicroARNs/genética , Microscopía Confocal , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Timocitos/metabolismo
7.
Eur J Immunol ; 49(1): 121-132, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30281154

RESUMEN

The interdependence of posttranscriptional gene regulation via miRNA and transcriptional regulatory networks in lymphocyte development is poorly understood. Here, we identified miR-191 as direct upstream modulator of a transcriptional module comprising the transcription factors Foxp1, E2A, and Egr1. Deletion as well as ectopic expression of miR-191 resulted in developmental arrest in B lineage cells, indicating that fine tuning of the combined expression levels of Foxp1, E2A, and Egr1, which in turn control somatic recombination and cytokine-driven expansion, constitutes a prerequisite for efficient B-cell development. In conclusion, we propose that miR-191 acts as a rheostat in B-cell development by fine tuning a key transcriptional program.


Asunto(s)
Linfocitos B/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Factores de Transcripción Forkhead/metabolismo , MicroARNs/genética , Proteínas Represoras/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular , Células Cultivadas , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Factores de Transcripción Forkhead/genética , Redes Reguladoras de Genes , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Interferente Pequeño/genética , Recombinación Genética , Proteínas Represoras/genética , Transcripción Genética , Transgenes/genética
8.
Immunol Cell Biol ; 97(2): 190-202, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30291723

RESUMEN

Mucosal-associated invariant T (MAIT) cells constitute a major fraction of innate-like T cells in humans with critical roles in defense against microbial pathogens and in maintaining mucosal integrity. However, the molecular mechanisms underlying MAIT cell development remain largely elusive. Here we investigated the role of miR-181a/b-1, a pair of microRNAs that serve as rheostat of TCR signal strength, in this process. Loss of miR-181a/b-1 in mice resulted in a profound arrest in early MAIT cell development. As a consequence, in the absence of miR-181a/b-1, thymic MAIT cells failed to acquire functional maturity based on expression of transcription factors PLZF, T-bet and RORγt. Temporal analysis of development using a molecular timer in combination with loss of miR-181a/b-1 revealed that MAIT cells complete functional maturation in the periphery and indicates that functionally mature MAIT cells in the thymus are long-term resident cells. Thus, our study provides insight into the dynamics of MAIT cell development in vivo. Of note, deletion of miR-181a/b-1 alone completely mirrored loss of all miRNAs.


Asunto(s)
MicroARNs/metabolismo , Células T Invariantes Asociadas a Mucosa , Timo/fisiología , Animales , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Ratones , MicroARNs/genética , Células T Invariantes Asociadas a Mucosa/citología , Células T Invariantes Asociadas a Mucosa/metabolismo , Timo/citología
9.
Curr Genet ; 65(2): 607-619, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30506264

RESUMEN

Here, we examine the genetic interactions between ESCRT-III mutations in the yeast Saccharomyces cerevisiae. From the obtained interaction network, we make predictions about alternative ESCRT-III complexes. By the successful generation of an octuple deletion strain using the CRISPR/Cas9 technique, we demonstrate for the first time that ESCRT-III activity as a whole is not essential for the life of a yeast cell. Endosomal sorting complex required for transport (ESCRT)-III proteins are membrane remodeling factors involved in a multitude of cellular processes. There are eight proteins in yeast with an ESCRT-III domain. It is not clear whether the diverse ESCRT-III functions are fulfilled by a single ESCRT-III complex or by different complexes with distinct composition. Genetic interaction studies may provide a hint on the existence of alternative complexes. We performed a genetic mini-array screen by analyzing the growth phenotypes of all pairwise combinations of ESCRT-III deletion mutations under different stress conditions. Our analysis is in line with previous data pointing to a complex containing Did2/CHMP1 and Ist1/IST1. In addition, we provide evidence for the existence of a novel complex consisting of Did2/CHMP1 and Vps2/CHMP2. Some of the interactions on Congo red plates could be explained by effects of ESCRT-III mutations on Rim101 signaling.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sistemas CRISPR-Cas , Endosomas/metabolismo , Epistasis Genética , Eliminación de Gen , Mutación , Fenotipo , Unión Proteica , Transporte de Proteínas , Saccharomyces cerevisiae/efectos de los fármacos
10.
Front Immunol ; 9: 2497, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30455689

RESUMEN

Development of T cells in the thymus is tightly controlled to continually produce functional, but not autoreactive, T cells. miRNAs provide a layer of post-transcriptional gene regulation to this process, but the role of many individual miRNAs in T-cell development remains unclear. miR-21 is prominently expressed in immature thymocytes followed by a steep decline in more mature cells. We hypothesized that such a dynamic expression was indicative of a regulatory function in intrathymic T-cell development. To test this hypothesis, we analyzed T-cell development in miR-21-deficient mice at steady state and under competitive conditions in mixed bone-marrow chimeras. We complemented analysis of knock-out animals by employing over-expression in vivo. Finally, we assessed miR-21 function in negative selection in vivo as well as differentiation in co-cultures. Together, these experiments revealed that miR-21 is largely dispensable for physiologic T-cell development. Given that miR-21 has been implicated in regulation of cellular stress responses, we assessed a potential role of miR-21 in endogenous regeneration of the thymus after sublethal irradiation. Again, miR-21 was completely dispensable in this process. We concluded that, despite prominent and highly dynamic expression in thymocytes, miR-21 expression was not required for physiologic T-cell development or endogenous regeneration.


Asunto(s)
MicroARNs/genética , Linfocitos T/fisiología , Timocitos/fisiología , Timo/fisiología , Animales , Médula Ósea , Diferenciación Celular , Células Cultivadas , Quimera , Selección Clonal Mediada por Antígenos , Técnicas de Cocultivo , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
11.
J Immunol Res ; 2018: 5086503, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30302345

RESUMEN

Among patients treated with the anticonvulsive and psychotropic drug carbamazepine (CBZ), approximately 10% develop severe and life-threatening adverse drug reactions. These immunological conditions are resolved upon withdrawal of the medicament, suggesting that the drug does not manifest in the body in long term. The HLA allele B∗15:02 has been described to be a genomic biomarker for CBZ-mediated immune reactions. It is not well understood if the immune reactions are triggered by the original drug or by its metabolite carbamazepine-10,11-epoxide (EPX) and how the interaction between the drug and the distinct HLA molecule occurs. Genetically engineered human B-lymphoblastoid cells expressing soluble HLA-B∗15:02 molecules were treated with the drug or its metabolite. Functional pHLA complexes were purified; peptides were eluted and sequenced. Applying mass spectrometric analysis, CBZ and EPX were monitored by analyzing the heavy chain and peptide fractions separately for the presence of the drug. This method enabled the detection of the drug in a biological situation post-pHLA assembly. Both drugs were bound to the HLA-B∗15:02 heavy chain; however, solely EPX altered the peptide-binding motif of B∗15:02-restricted peptides. This observation could be explained through structural insight; EPX binds to the peptide-binding region and alters the biochemical features of the F pocket and thus the peptide motif. Understanding the nature of immunogenic interactions between CBZ and EPX with the HLA immune complex will guide towards effective and safe medications.


Asunto(s)
Alérgenos/efectos adversos , Anticonvulsivantes/efectos adversos , Linfocitos B/efectos de los fármacos , Carbamazepina/análogos & derivados , Carbamazepina/efectos adversos , Hipersensibilidad a las Drogas/inmunología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/inmunología , Alérgenos/química , Alérgenos/uso terapéutico , Anticonvulsivantes/química , Anticonvulsivantes/uso terapéutico , Presentación de Antígeno , Linfocitos B/fisiología , Sitios de Unión , Carbamazepina/química , Carbamazepina/farmacología , Carbamazepina/uso terapéutico , Línea Celular , Antígeno HLA-B15/genética , Antígeno HLA-B15/metabolismo , Humanos , Inmunomodulación , Espectrometría de Masas , Fragmentos de Péptidos/metabolismo , Unión Proteica
12.
Immunogenetics ; 70(10): 639-646, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30128813

RESUMEN

Peptide selection in infected cells is not fully understood yet, but several indications point to the fact that there are differences to uninfected cells, especially in productive HCMV infection, since HCMV evolved various strategies to disable the hosts immune system, including presentation of peptide-HLA complexes to immune effector cells. Therefore, peptide predictions for specific HLA alleles are limited in these cases and the naturally presented peptide repertoire of HCMV-infected cells is of major interest to optimize adoptive T cell therapies. The allotypes HLA-B*35:01 and B*35:08 differ at a single amino acid at position 156 and have been described to differ in their peptide features and in their association with the peptide loading complex. Virus specific T cells recognizing the allelic pHLA-B*35 complexes could be detected, indicating a significant role of this HLA subtypes in viral immunity. However, naturally selected and presented viral peptides have not been described so far. In this study, we analyzed the peptide binding repertoire for HLA-B*35:01 and HLA-B*35:08 in HCMV-infected cells. The isolated peptides from both allelic subtypes were of extraordinary length, however differed in their features, origin, and sequence. For these HCMV-originated peptides, no overlap in the peptide repertoire could be observed between the two allelic subtypes. These findings reveal the discrepancies between predicted and naturally presented immunogenic epitopes and support the need of comprehensive peptide recruitment data for personalized and effective cellular therapies.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Citomegalovirus/inmunología , Epítopos/inmunología , Antígenos HLA-B/genética , Alelos , Secuencia de Aminoácidos/genética , Linfocitos T CD8-positivos/inmunología , Citomegalovirus/patogenicidad , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/virología , Epítopos/genética , Antígenos HLA-B/inmunología , Humanos , Péptidos/genética , Péptidos/inmunología
13.
Immunogenetics ; 68(4): 247-60, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26758079

RESUMEN

Defining permissive and non-permissive mismatches for transplantation is a demanding challenge. Single mismatches at amino acid (AA) position 156 of human leucocyte antigen (HLA) class I have been described to alter the peptide motif, repertoire, or mode of peptide loading through differential interaction with the peptide-loading complex. Hence, a single mismatch can tip the balance and trigger an immunological reaction. HLA-B*35 subtypes have been described to evade the loading complex, 156 mismatch distinguishing B*35:01 and B*35:08 changes the binding groove sufficiently to alter the sequence features of the selected peptide repertoire. To understand the functional influences of residue 156 in B*35 variants, we analyzed the peptide binding profiles of HLA-B*35:01(156Leu), B*35:08(156Arg) and B*35:62(156Trp). The glycoprotein tapasin represents a target for immune evasions and functions within the multimeric peptide-loading complex to stabilize empty class I molecules and promote acquisition of high-affinity peptides. All three B*35 subtypes showed a tapasin-independent mode of peptide acquisition. HLA-B*35-restricted peptides of low- and high-binding affinities were recovered in the presence and absence of tapasin and subsequently sequenced utilizing mass spectrometry. The peptides derived from B*35 variants differ substantially in their features dependent on their mode of recruitment; all peptides were preferentially anchored by Pro at p2 and Tyr, Phe, Leu, or Lys at pΩ. However, the Trp at residue 156 altered the p2 motif to an Ala and restricted the pΩ to a Trp. Our results highlight the importance of understanding the impact of key micropolymorphism and how a single AA mismatch orchestrates the neighboring AAs.


Asunto(s)
Sustitución de Aminoácidos/genética , Antígeno HLA-B35/genética , Péptidos/genética , Polimorfismo Genético/inmunología , Secuencias de Aminoácidos/genética , Secuencias de Aminoácidos/inmunología , Sustitución de Aminoácidos/inmunología , Aminoácidos/genética , Aminoácidos/inmunología , Línea Celular , Retículo Endoplásmico/inmunología , Antígeno HLA-B35/inmunología , Trasplante de Células Madre Hematopoyéticas , Humanos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/inmunología , Péptidos/inmunología , Unión Proteica/inmunología
14.
Stem Cells Int ; 2015: 346714, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26366178

RESUMEN

The HLA-E locus encodes a nonclassical class Ib molecule that serves many immune functions from inhibiting NK cells to activating CTLs. Structural analysis of HLA-E/NKG2A complexes visualized fine-tuning of protective immune responses through AA interactions between HLA-E, the bound peptide, and NKG2A/CD94. A loss of cellular protection through abrogation of the HLA-E/NKG2A engagement is dependent on the HLA-E bound peptide. The role of HLA-E in posttransplant outcomes is not well understood but might be attributed to its peptide repertoire. To investigate the self-peptide repertoire of HLA-E (∗) 01:01 in the absence of protective HLA class I signal peptides, we utilized soluble HLA technology in class I negative LCL cells in order to characterize HLA-E (∗) 01:01-bound ligands by mass-spectrometry. To understand the immunological impact of these analyzed ligands on NK cell reactivity, we performed cellular assays. Synthesized peptides were loaded onto recombinant T2 cells expressing HLA-E (∗) 01:01 molecules and applied in cytotoxicity assays using the leukemia derived NK cell line (NKL) as effector. HLA-E in complex with the self-peptides demonstrated a shift towards cytotoxicity and a loss of cell protection. Our data highlights the fact that the HLA-E-peptidome is not as restricted as previously thought and support the suggestion of a posttransplant role for HLA-E.

15.
J Immunol Res ; 2014: 246171, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25254222

RESUMEN

HLA class I incompatibilities still remain one of the main barriers for unrelated bone marrow transplantation (BMT); hence the molecular understanding of how to mismatch patients and donors and still have successful clinical outcomes will guide towards the future of unrelated BMT. One way to estimate the magnitude of polymorphisms within the PBR is to determine which peptides can be selected by individual HLA alleles and subsequently presented for recognition by T cells. The features (structure, length, and sequence) of different peptides each confer an individual pHLA landscape and thus directly shape the individual immune response. The elution and sequencing of peptides by mass spectrometric analysis enable determining the bona fide repertoire of presented peptides for a given allele. This is an effective and simple way to compare the functions of allelic variants and make a first assessment of their degree of permissivity. We describe the methodology used for peptide sequencing and the limitations of peptide prediction tools compared to experimental methods. We highlight the altered peptide features that are observed between allelic variants and the need to discover the altered peptide repertoire in situations of "artificial" graft versus host disease (GvHD) that occur in HLA-specific hypersensitive immune responses to drugs.


Asunto(s)
Trasplante de Médula Ósea/métodos , Enfermedad Injerto contra Huésped/inmunología , Antígenos HLA/inmunología , Prueba de Histocompatibilidad/métodos , Alelos , Enfermedad Injerto contra Huésped/genética , Antígenos HLA/genética , Humanos , Modelos Inmunológicos , Péptidos/inmunología , Linfocitos T/inmunología , Donante no Emparentado
16.
J Immunol Res ; 2014: 298145, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25802875

RESUMEN

While many HLA class I molecules interact directly with the peptide loading complex (PLC) for conventional loading of peptides certain class I molecules are able to present peptides in a way that circumvents the PLC components. We investigated micropolymorphisms at position 156 of HLA-A(*)24 allotypes and their effects on PLC dependence for assembly and peptide binding specificities. HLA-A(*)24:06(156Trp) and HLA-A(*)24:13(156Leu) showed high levels of cell surface expression while HLA-A(*)24:02(156Gln) was expressed at low levels in tapasin deficient cells. Peptides presented by these allelic variants showed distinct differences in features and repertoire. Immunoprecipitation experiments demonstrated all the HLA-A(*)24/156 variants to associate at similar levels with tapasin when present. Structurally, HLA-A(*)24:02 contains the residue triad Met97/His114/Gln156 and a Trp156 or Leu156 polymorphism provides tapasin independence by stabilizing these triad residues, thus generating an energetically stable and a more peptide receptive environment. Micropolymorphisms at position 156 can influence the generic peptide loading pathway for HLA-A(*)24 by altering their tapasin dependence for peptide selection. The trade-off for this tapasin independence could be the presentation of unusual ligands by these alleles, imposing significant risk following hematopoietic stem cell transplantation (HSCT).


Asunto(s)
Aminoácidos/genética , Antígenos/metabolismo , Antígeno HLA-A24/metabolismo , Fragmentos de Péptidos/metabolismo , Presentación de Antígeno , Línea Celular , Técnicas de Silenciamiento del Gen , Humanos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Polimorfismo Genético , Unión Proteica , Estabilidad Proteica , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...