Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ISME Commun ; 4(1): ycae041, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38707842

RESUMEN

In response to climate change, the nature of endophytes and their applications in sustainable agriculture have attracted the attention of academics and agro-industries. This work focused on the endophytic halophiles of the endangered Taiwanese salt marsh plant, Bolboschoenus planiculmis, and evaluated the functions of these isolates through in planta salinity stress alleviation assay using Arabidopsis. The endophytic strain Priestia megaterium BP01R2, which can promote plant growth and salinity tolerance, was further characterized through multi-omics approaches. The transcriptomics results suggested that BP01R2 could function by tuning hormone signal transduction, energy-producing metabolism, multiple stress responses, etc. In addition, the cyclodipeptide cyclo(L-Ala-Gly), which was identified by metabolomics analysis, was confirmed to contribute to the alleviation of salinity stress in stressed plants via exogenous supplementation. In this study, we used multi-omics approaches to investigate the genomics, metabolomics, and tropisms of endophytes, as well as the transcriptomics of plants in response to the endophyte. The results revealed the potential molecular mechanisms underlying the occurrence of biostimulant-based plant-endophyte symbioses with possible application in sustainable agriculture.

3.
Microbiol Resour Announc ; 13(2): e0108323, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38189308

RESUMEN

Agrobacterium pusense Bbcg2-2 is a strain isolated from a crown gall sample of blueberry (Vaccinium corymbosum) cultivar "Flicker" grown in Taiwan. The complete genome sequence of this bacterium consists of a 2,798,342-bp circular chromosome, a 2,140,031-bp linear chromid, and a 386,016-bp circular plasmid.

4.
Microbiol Resour Announc ; 13(2): e0099323, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38206024

RESUMEN

The complete genome sequence of Candidatus Phytoplasma australasiaticum strain WF_GM2021, which consists of one 633,005-bp circular chromosome, is presented in this work. This uncultivated plant-pathogenic bacterium is associated with soybean (Glycine max) witches' broom disease in Wufeng District, Taichung City, Taiwan.

5.
Microorganisms ; 12(1)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38257969

RESUMEN

'Candidatus Phytoplasma meliae' is a pathogen associated with chinaberry yellowing disease, which has become a major phytosanitary problem for chinaberry forestry production in Argentina. Despite its economic impact, no genome information of this phytoplasma has been published, which has hindered its characterization at the genomic level. In this study, we used a metagenomics approach to analyze the draft genome of the 'Ca. P. meliae' strain ChTYXIII. The draft assembly consisted of twenty-one contigs with a total length of 751.949 bp, and annotation revealed 669 CDSs, 34 tRNAs, and 1 set of rRNA operons. The metabolic pathways analysis showed that ChTYXIII contains the complete core genes for glycolysis and a functional Sec system for protein translocation. Our phylogenomic analysis based on 133 single-copy genes and genome-to-genome metrics supports the classification as unique 'Ca. P. species' within the MPV clade. We also identified 31 putative effectors, including a homolog to SAP11 and others that have only been described in this pathogen. Our ortholog analysis revealed 37 PMU core genes in the genome of 'Ca. P. meliae' ChTYXIII, leading to the identification of 2 intact PMUs. Our work provides important genomic information for 'Ca. P. meliae' and others phytoplasmas for the 16SrXIII (MPV) group.

6.
Microbiol Resour Announc ; 12(12): e0083023, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37933969

RESUMEN

Here, we report the isolation and genome sequence of a coral-associated Erythrobacteraceae bacterium, strain WH01K. The complete assembly consists of one 2,745,896 bp circular chromosome and one 172,502 bp circular plasmid.

7.
Microbiol Resour Announc ; 12(11): e0053223, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37855594

RESUMEN

We announce the complete genome sequence of Vibrio parahaemolyticus strain PH1273. This strain was collected from a Penaeus vannamei pond in the Philippines in 2015. Genome analysis revealed that it lacks the gene pirAB responsible for causing acute hepatopancreatic necrosis disease but encode multiple secretion systems and the associated effectors.

8.
Microbiol Resour Announc ; 12(10): e0045723, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37855628

RESUMEN

The complete genome sequence of "Candidatus Phytoplasma cynodontis" strain GY2015, which consists of one 498,922-bp circular chromosome, is presented in this work. This uncultivated plant-pathogenic bacterium is associated with Bermuda grass white leaf disease in Taoyuan, Taiwan.

9.
Microbiol Resour Announc ; 12(9): e0044323, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37462364

RESUMEN

The complete genome sequence of "Candidatus Phytoplasma pruni" strain PR2021, which consists of one 705,138 bp circular chromosome and one 4,757 bp circular plasmid, is presented in this work. This bacterium is associated with poinsettia (Euphorbia pulcherrima) cultivar "Princettia Pink."

10.
Microbiol Resour Announc ; 12(7): e0030823, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37284786

RESUMEN

The complete genome sequence of "Candidatus Phytoplasma aurantifolia" TB2022, which consists of one 670,073-bp circular chromosome, is presented in this work. This bacterium is associated with sweet potato little leaf disease in Fujian Province, China.

11.
Annu Rev Phytopathol ; 61: 1-23, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37164023

RESUMEN

Among plant-associated bacteria, agrobacteria occupy a special place. These bacteria are feared in the field as agricultural pathogens. They cause abnormal growth deformations and significant economic damage to a broad range of plant species. However, these bacteria are revered in the laboratory as models and tools. They are studied to discover and understand basic biological phenomena and used in fundamental plant research and biotechnology. Agrobacterial pathogenicity and capability for transformation are one and the same and rely on functions encoded largely on their oncogenic plasmids. Here, we synthesize a substantial body of elegant work that elucidated agrobacterial virulence mechanisms and described their ecology. We review findings in the context of the natural diversity that has been recently unveiled for agrobacteria and emphasize their genomics and plasmids. We also identify areas of research that can capitalize on recent findings to further transform our understanding of agrobacterial virulence and ecology.


Asunto(s)
Agrobacterium , Evolución Biológica , Virulencia , Ecología , Genómica
12.
Microbiol Resour Announc ; 12(6): e0030623, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37227269

RESUMEN

The complete genome sequence of "Candidatus Phytoplasma asteris" QS2022, which consists of one 834,303-bp circular chromosome, is presented in this work. This bacterium is associated with lettuce chlorotic leaf rot disease in Fujian Province, China.

13.
mBio ; 14(2): e0017723, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36877054

RESUMEN

The type VI secretion system (T6SS) is deployed by many proteobacteria to secrete effector proteins into bacterial competitors for competition or eukaryotic cells for pathogenesis. Agrobacteria, a group of soilborne phytopathogens causing crown gall disease on various plant species, deploy the T6SS to attack closely and distantly related bacterial species in vitro and in planta. Current evidence suggests that the T6SS is not essential for pathogenesis under direct inoculation, but it remains unknown whether the T6SS influences natural disease incidence or the microbial community within crown galls (i.e., the gallobiome). To address these two key questions, we established a soil inoculation method on wounded tomato seedlings that mimics natural infections and developed a bacterial 16S rRNA gene amplicon enrichment sequencing platform. By comparing the Agrobacterium wild-type strain C58 with two T6SS mutants, we demonstrate that the T6SS influences both disease occurrence and gallobiome composition. Based on multiple inoculation trials across seasons, all three strains induced tumors, but the mutants had significantly lower disease incidences. The season of inoculation played a more important role than the T6SS in shaping the gallobiome. The influence of the T6SS was evident in summer, during which two Sphingomonadaceae species and the family Burkholderiaceae were enriched in the gallobiome induced by the mutants. Further in vitro competition and colonization assays demonstrated the T6SS-mediated antagonism to a Sphingomonas sp. R1 strain isolated from tomato rhizosphere in this study. In conclusion, this work demonstrates that the Agrobacterium T6SS promotes tumorigenesis in infection processes and provides competitive advantages in gall-associated microbiota. IMPORTANCE The T6SS is widespread among proteobacteria and used for interbacterial competition by agrobacteria, which are soil inhabitants and opportunistic bacterial pathogens causing crown gall disease in a wide range of plants. Current evidence indicates that the T6SS is not required for gall formation when agrobacteria are inoculated directly on plant wounding sites. However, in natural settings, agrobacteria may need to compete with other bacteria in bulk soil to gain access to plant wounds and influence the microbial community inside crown galls. The role of the T6SS in these critical aspects of disease ecology have remained largely unknown. In this study, we successfully developed a soil inoculation method coupled with blocker-mediated enrichment of bacterial 16S rRNA gene amplicon sequencing, named SI-BBacSeq, to address these two important questions. We provided evidence that the T6SS promotes disease occurrence and influences crown gall microbiota composition by interbacterial competition.


Asunto(s)
Bacterias , Sistemas de Secreción Tipo VI , Humanos , ARN Ribosómico 16S/genética , Bacterias/genética , Sistemas de Secreción Tipo VI/metabolismo , Agrobacterium/genética , Carcinogénesis , Antibacterianos , Proteínas Bacterianas/metabolismo
14.
Plant Sci ; 330: 111634, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36775071

RESUMEN

Class I small heat shock proteins (CI sHSPs), OsHsp16.9A and OsHsp18.0, share 74% identity in amino acid sequences and accumulate in response to heat shock treatments. Individual rice transformants overexpressing OsHsp16.9A and OsHsp18.0 exhibit distinct thermoprotection/thermotolerance modes. Under high temperature stress, OsHsp16.9A-overexpressing lines showed higher seed germination rate, seedling survival, and pollen germination than wild-type controls, while OsHsp18.0 overexpression provided higher thermoprotection/thermotolerance for seedling survival. To elucidate the functional roles of OsHsp16.9A, mass spectrometry was used to identify OsHsp16.9A-interacting proteins. OsHsp101 was consistently identified in the OsHsp16.9A protein complex in several mass spectrometry analyses of seed proteins from OsHsp16.9A-overexpressing lines. Both OsHsp16.9A and OsHsp101 proteins accumulated during similar developmental stages of rice seeds and formed a heat-stable complex under high temperature treatments in in vitro assays. Co-localization of OsHsp16.9A and OsHsp101 was observed via ratiometric bimolecular fluorescence complementation analyses. Amino acid mutation studies revealed that OsHsp16.9A glutamate residue 74 and amino acid residues 23-36 were essential for OsHsp16.9A-OsHsp101 interaction. Moreover, overexpressing OsHsp16.9A in OsHsp101 knockdown mutants did not increase the seed germination rate under heat stress, which further confirmed the functional roles of OsHsp16.9A-OsHsp101 interaction in conferring thermotolerance to rice plants.


Asunto(s)
Proteínas de Choque Térmico Pequeñas , Oryza , Termotolerancia , Termotolerancia/genética , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Choque Térmico Pequeñas/genética , Proteínas de Choque Térmico Pequeñas/metabolismo , Aminoácidos/metabolismo , Regulación de la Expresión Génica de las Plantas
15.
Front Microbiol ; 13: 959080, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36118214

RESUMEN

Plant growth-promoting rhizobacteria (PGPR) are microorganisms that promote plant health and play a critical role in sustainable agriculture. As a PGPR, Rhodopseudomonas palustris strain PS3, when applied as a microbial inoculant, exhibited beneficial effects on a variety of crops. In this study, we investigated the effects of PS3 on tomato growth, soil properties, and soil microbiota composition in an organic field. The results demonstrated that PS3 inoculation significantly improved the yield of marketable tomato fruit (37%) and the postharvest quality (e.g., sweetness, taste, vitamin C, total phenolic compounds, and lycopene). Additionally, soil nutrient availability (35-56%) and enzymatic activities (13-62%) also increased. We detected that approximately 107 CFU/g soil of R. palustris survived in the PS3-treated soil after harvest. Furthermore, several bacterial genera known to be associated with nutrient cycling (e.g., Dyella, Novosphingobium, Luteimonas, Haliangium, and Thermomonas) had higher relative abundances (log2 fold change >2.0). To validate the results of the field experiment, we further conducted pot experiments with field-collected soil using two different tomato cultivars and obtained consistent results. Notably, the relative abundance of putative PGPRs in the genus Haliangium increased with PS3 inoculation in both cultivars (1.5 and 34.2%, respectively), suggesting that this genus may have synergistic interactions with PS3. Taken together, we further demonstrated the value of PS3 in sustainable agriculture and provided novel knowledge regarding the effects of this PGPR on soil microbiota composition.

16.
Front Microbiol ; 13: 932840, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36033852

RESUMEN

Thermosynechococcus is a genus of thermophilic unicellular cyanobacteria that dominates microbial mats in Asian non-acidic hot springs. These cyanobacteria are the major primary producers in their ecological niches and are promising sources of thermostable enzymes for biotechnology applications. To improve our understanding of these organisms, we conducted whole-genome sequencing of a novel strain for comparative analysis with other representatives in the same genus. This newly characterized strain, Thermosynechococcus sp. TA-1, was isolated from the Taian hot springs in Taiwan. Analyses based on average nucleotide identity (ANI) and genome-scale phylogeny suggested that TA-1 and another Taiwanese strain CL-1 belong to a novel species-level taxon. Two metagenome-assembled genomes (MAGs) originated from India represent the sister group, and Thermosynechococcus elongatus PKUAC-SCTE542 from China is the next closest lineage. All cultivated strains and MAGs from Japan form a separate monophyletic clade and could be classified into two species-level taxa. Intriguingly, although TA-1 and CL-1 share 97.0% ANI, the genome alignment identified at least 16 synteny breakpoints that are mostly associated with transposase genes, which illustrates the dynamic nature of their chromosomal evolution. Gene content comparisons identified multiple features distinct at species- or strain-level among these Thermosynechococcus representatives. Examples include genes involved in bicarbonate transportation, nitric oxide protection, urea utilization, kanamycin resistance, restriction-modification system, and chemotaxis. Moreover, we observed the insertion of type II inteins in multiple genes of the two Taiwanese strains and inferred putative horizontal transfer of an asparagine synthase gene (asnB) associated with exopolysaccharides gene cluster. Taken together, while previous work suggested that strains in this genus share a highly conserved genomic core and no clear genetic differentiation could be linked to environmental factors, we found that the overall pattern of gene content divergence is largely congruent with core genome phylogeny. However, it is difficult to distinguish between the roles of phylogenetic relatedness and geographic proximity in shaping the genetic differentiation. In conclusion, knowledge of the genomic differentiation among these strains provides valuable resources for future functional characterization.

18.
Artículo en Inglés | MEDLINE | ID: mdl-35471141

RESUMEN

The genus 'Candidatus Phytoplasma' was proposed to accommodate cell wall-less bacteria that are molecularly and biochemically incompletely characterized, and colonize plant phloem and insect vector tissues. This provisional classification is highly relevant due to its application in epidemiological and ecological studies, mainly aimed at keeping the severe phytoplasma plant diseases under control worldwide. Given the increasing discovery of molecular diversity within the genus 'Ca. Phytoplasma', the proposed guidelines were revised and clarified to accommodate those 'Ca. Phytoplasma' species strains sharing >98.65 % sequence identity of their full or nearly full 16S rRNA gene sequences, obtained with at least twofold coverage of the sequence, compared with those of the reference strain of such species. Strains sharing <98.65 % sequence identity with the reference strain but >98.65 % with other strain(s) within the same 'Ca. Phytoplasma' species should be considered related strains to that 'Ca. Phytoplasma' species. The guidelines herein, keep the original published reference strains. However, to improve 'Ca. Phytoplasma' species assignment, complementary strains are suggested as an alternative to the reference strains. This will be implemented when only a partial 16S rRNA gene and/or a few other genes have been sequenced, or the strain is no longer available for further molecular characterization. Lists of 'Ca. Phytoplasma' species and alternative reference strains described are reported. For new 'Ca. Phytoplasma' species that will be assigned with identity ≥98.65 % of their 16S rRNA gene sequences, a threshold of 95 % genome-wide average nucleotide identity is suggested. When the whole genome sequences are unavailable, two among conserved housekeeping genes could be used. There are 49 officially published 'Candidatus Phytoplasma' species, including 'Ca. P. cocostanzaniae' and 'Ca. P. palmae' described in this manuscript.


Asunto(s)
Phytoplasma , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Filogenia , Phytoplasma/genética , Enfermedades de las Plantas/microbiología , Plantas , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
19.
Front Microbiol ; 13: 773608, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35300489

RESUMEN

Phytoplasmas are insect-transmitted plant pathogens that cause substantial losses in agriculture. In addition to economic impact, phytoplasmas induce distinct disease symptoms in infected plants, thus attracting attention for research on molecular plant-microbe interactions and plant developmental processes. Due to the difficulty of establishing an axenic culture of these bacteria, culture-independent genome characterization is a crucial tool for phytoplasma research. However, phytoplasma genomes have strong nucleotide composition biases and are repetitive, which make it challenging to produce complete assemblies. In this study, we utilized Illumina and Oxford Nanopore sequencing technologies to obtain the complete genome sequence of 'Candidatus Phytoplasma luffae' strain NCHU2019 that is associated with witches' broom disease of loofah (Luffa aegyptiaca) in Taiwan. The fully assembled circular chromosome is 769 kb in size and is the first representative genome sequence of group 16SrVIII phytoplasmas. Comparative analysis with other phytoplasmas revealed that NCHU2019 has a remarkably repetitive genome, possessing a pair of 75 kb repeats and at least 13 potential mobile units (PMUs) that account for ∼25% of its chromosome. This level of genome repetitiveness is exceptional for bacteria, particularly among obligate pathogens with reduced genomes. Our genus-level analysis of PMUs demonstrated that these phytoplasma-specific mobile genetic elements can be classified into three major types that differ in gene organization and phylogenetic distribution. Notably, PMU abundance explains nearly 80% of the variance in phytoplasma genome sizes, a finding that provides a quantitative estimate for the importance of PMUs in phytoplasma genome variability. Finally, our investigation found that in addition to horizontal gene transfer, PMUs also contribute to intra-genomic duplications of effector genes, which may provide redundancy for subfunctionalization or neofunctionalization. Taken together, this work improves the taxon sampling for phytoplasma genome research and provides novel information regarding the roles of mobile genetic elements in phytoplasma evolution.

20.
BMC Biol ; 20(1): 16, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-35022048

RESUMEN

BACKGROUND: Many named species as defined in current bacterial taxonomy correspond to species complexes. Uncertainties regarding the organization of their genetic diversity challenge research efforts. We utilized the Agrobacterium tumefaciens species complex (a.k.a. Agrobacterium biovar 1), a taxon known for its phytopathogenicity and applications in transformation, as a study system and devised strategies for investigating genome diversity and evolution of species complexes. RESULTS: We utilized 35 genome assemblies, including 14 newly generated ones, to achieve a phylogenetically balanced sampling of A. tumefaciens. Our genomic analysis suggested that the 10 genomospecies described previously are distinct biological species and supported a quantitative guideline for species delineation. Furthermore, our inference of gene content and core-genome phylogeny allowed for investigations of genes critical in fitness and ecology. For the type VI secretion system (T6SS) involved in interbacterial competition and thought to be conserved, we detected multiple losses and one horizontal gene transfer. For the tumor-inducing plasmids (pTi) and pTi-encoded type IV secretion system (T4SS) that are essential for agrobacterial phytopathogenicity, we uncovered novel diversity and hypothesized their involvement in shaping this species complex. Intriguingly, for both T6SS and T4SS, genes encoding structural components are highly conserved, whereas extensive diversity exists for genes encoding effectors and other proteins. CONCLUSIONS: We demonstrate that the combination of a phylogeny-guided sampling scheme and an emphasis on high-quality assemblies provides a cost-effective approach for robust analysis in evolutionary genomics. We show that the T6SS VgrG proteins involved in specific effector binding and delivery can be classified into distinct types based on domain organization. The co-occurrence patterns of VgrG-associated domains and the neighboring genes that encode different chaperones/effectors can be used to infer possible interacting partners. Similarly, the associations between plant host preference and the pTi type among these strains can be used to infer phenotype-genotype correspondence. Our strategies for multi-level investigations at scales that range from whole genomes to intragenic domains and phylogenetic depths from between- to within-species are applicable to other bacteria. Furthermore, modularity observed in the molecular evolution of genes and domains is useful for inferring functional constraints and informing experimental works.


Asunto(s)
Bacterias , Proteínas Bacterianas , Bacterias/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/genética , Filogenia , Plásmidos/genética , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...