Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(5): 3513-3518, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38259995

RESUMEN

The thermoelectric properties of armchair graphene nanoribbons (AGNRs) with array characteristics are investigated theoretically using the tight-binding model and Green's function technique. The AGNR structures with array characteristics are created by embedding a narrow boron nitride nanoribbon (BNNR) into a wider AGNR, resulting in two narrow AGNRs. This system is denoted as w-AGNR/n-BNNR, where 'w' and 'n' represent the widths of the wider AGNR and narrow BNNR, respectively. We elucidate the coupling effect between two narrow symmetrical AGNRs on the electronic structure of w-AGNR/i-BNNR. A notable discovery is that the power factor of the 15-AGNR/5-BNNR with the minimum width surpasses the quantum limitation of power factor for 1D ideal systems. The energy level degeneracy observed in the first subbands of w-AGNR/n-BNNR structures proves to be highly advantageous in enhancing the electrical power outputs of graphene nanoribbon devices.

2.
Nanotechnology ; 34(50)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37703858

RESUMEN

We present a theoretical investigation of electron heat current in asymmetrical length armchair graphene nanoribbon (AGNR) heterostructures with vacancies, focusing on the topological states (TSs). In particular, we examine the 9-7-9 AGNR heterostructures where the TSs are well-isolated from the conduction and valence subbands. This isolation effectively mitigates thermal noise of subbands arising from temperature fluctuations during charge transport. Moreover, when the TSs exhibit an orbital off-set, intriguing electron heat rectification phenomena are observed, primarily attributed to inter-TS electron Coulomb interactions. To enhance the heat rectification ratio (ηQ), we manipulate the coupling strengths between the heat sources and the TSs by introducing asymmetrical lengths in the 9-AGNRs. This approach offers control over the rectification properties, enabling significant enhancements. Additionally, we introduce vacancies strategically positioned between the heat sources and the TSs to suppress phonon heat current. This arrangement effectively reduces the overall phonon heat current, while leaving the TSs unaffected. Our findings provide valuable insights into the behavior of electron heat current in AGNR heterostructures, highlighting the role of topological states, inter-TS electron Coulomb interactions, and the impact of structural modifications such as asymmetrical lengths and vacancy positioning. These results pave the way for the design and optimization of graphene-based devices with improved thermal management and efficient control of electron heat transport.

3.
Sci Rep ; 13(1): 14333, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37653007

RESUMEN

We reported exciton binding-energy determination using tunneling-current spectroscopy of Germanium (Ge) quantum dot (QD) single-hole transistors (SHTs) operating in the few-hole regime, under 405-1550 nm wavelength (λ) illumination. When the photon energy is smaller than the bandgap energy (1.46 eV) of a 20 nm Ge QD (for instance, λ = 1310 nm and 1550 nm illuminations), there is no change in the peak voltages of tunneling current spectroscopy even when the irradiation power density reaches as high as 10 µW/µm2. In contrast, a considerable shift in the first hole-tunneling current peak towards positive VG is induced (ΔVG ≈ 0.08 V at 0.33 nW/µm2 and 0.15 V at 1.4 nW/µm2) and even additional photocurrent peaks are created at higher positive VG values (ΔVG ≈ 0.2 V at 10 nW/µm2 irradiation) by illumination at λ = 850 nm (where the photon energy matches the bandgap energy of the 20 nm Ge QD). These experimental observations were further strengthened when Ge-QD SHTs were illuminated by λ = 405 nm lasers at much lower optical-power conditions. The newly-photogenerated current peaks are attributed to the contribution of exciton, biexciton, and positive trion complexes. Furthermore, the exciton binding energy can be determined by analyzing the tunneling current spectra.

4.
Nanomaterials (Basel) ; 13(11)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37299660

RESUMEN

In this study, we investigate the charge transport properties of semiconducting armchair graphene nanoribbons (AGNRs) and heterostructures through their topological states (TSs), with a specific focus on the Coulomb blockade region. Our approach employs a two-site Hubbard model that takes into account both intra- and inter-site Coulomb interactions. Using this model, we calculate the electron thermoelectric coefficients and tunneling currents of serially coupled TSs (SCTSs). In the linear response regime, we analyze the electrical conductance (Ge), Seebeck coefficient (S), and electron thermal conductance (κe) of finite AGNRs. Our results reveal that at low temperatures, the Seebeck coefficient is more sensitive to many-body spectra than electrical conductance. Furthermore, we observe that the optimized S at high temperatures is less sensitive to electron Coulomb interactions than Ge and κe. In the nonlinear response regime, we observe a tunneling current with negative differential conductance through the SCTSs of finite AGNRs. This current is generated by electron inter-site Coulomb interactions rather than intra-site Coulomb interactions. Additionally, we observe current rectification behavior in asymmetrical junction systems of SCTSs of AGNRs. Notably, we also uncover the remarkable current rectification behavior of SCTSs of 9-7-9 AGNR heterostructure in the Pauli spin blockade configuration. Overall, our study provides valuable insights into the charge transport properties of TSs in finite AGNRs and heterostructures. We emphasize the importance of considering electron-electron interactions in understanding the behavior of these materials.

5.
J Phys Condens Matter ; 35(30)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37068484

RESUMEN

We theoretically analyze the thermoelectric properties of graphene quantum dot arrays (GQDAs) with line- or surface-contacted metal electrodes. Such GQDAs are realized as zigzag graphene nanoribbons (ZGNRs) with periodic vacancies. Gaps and minibands are formed in these GQDAs, which can have metallic and semiconducting phases. The electronic states of the first conduction (valence) miniband with nonlinear dispersion may have long coherent lengths along the zigzag edge direction. With line-contacted metal electrodes, the GQDAs have the characteristics of serially coupled quantum dots (SCQDs) if the armchair edge atoms of the ZGNRs are coupled to the electrodes. By contrast, the GQDAs have the characteristics of parallel quantum dots if the zigzag edge atoms are coupled to the electrodes. The maximum thermoelectric power factors of SCQDs with line-contacted electrodes of Cu, Au, Pt, Pd, or Ti at room temperature were similar or greater than 0.186 nW K-1; their figures of merit were greater than three. GQDAs with line-contacted metal electrodes have much better thermoelectric performance than surface contacted metal electrodes.

6.
Nanomaterials (Basel) ; 12(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36234484

RESUMEN

The transport and thermoelectric properties of finite textured graphene nanoribbons (t-GNRs) connected to electrodes with various coupling strengths are theoretically studied in the framework of the tight-binding model and Green's function approach. Due to quantum constriction induced by the indented edges, such t-GNRs behave as serially coupled graphene quantum dots (SGQDs). These types of SGQDs can be formed by tailoring zigzag GNRs (ZGNRs) or armchair GNRs (AGNRs). Their bandwidths and gaps can be engineered by varying the size of the quantum dot and the neck width at indented edges. Effects of defects and junction contact on the electrical conductance, Seebeck coefficient, and electron thermal conductance of t-GNRs are calculated. When a defect occurs in the interior site of textured ZGNRs (t-ZGNRs), the maximum power factor within the central gap or near the band edges is found to be insensitive to the defect scattering. Furthermore, we found that SGQDs formed by t-ZGNRs have significantly better electrical power outputs than those of textured ANGRs due to the improved functional shape of the transmission coefficient in t-ZGNRs. With a proper design of contact, the maximum power factor (figure of merit) of t-ZGNRs could reach 90% (95%) of the theoretical limit.

7.
Phys Chem Chem Phys ; 17(29): 19386-93, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26144845

RESUMEN

The quantum interference and orbital filling effects on the thermoelectric (TE) properties of quantum dot (QD) molecules with high figure of merit are illustrated via the full solution to the Hubbard-Anderson model in the Coulomb blockade regime. It is found that under certain conditions in the triangular QD molecule (TQDM), destructive quantum interference (QI) can occur, which leads to vanishingly small electrical conductance, while the Seebeck coefficient is modified dramatically. When the TQDM is in the charge localization state due to QI, the Seebeck coefficient is seriously suppressed at low temperature, but is highly enhanced at high temperature. Meanwhile, the behavior of the Lorenz number reveals that it is easier to block charge transport via destructive QI than the electron heat transport at high temperatures. The maximum power factor (PF) in the TQDM occurs under full-filling conditions. Nevertheless, low-filling conditions are preferred for getting the maximum PF in serially coupled triple QDs in general. In double QDs, the maximum PF can be achieved either with orbital-depletion or orbital-filling as a result of electron-hole symmetry. Our theoretical work provides a useful guideline for the advancement of the nanoscale TE technology.

8.
Phys Chem Chem Phys ; 17(9): 6606-11, 2015 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-25660124

RESUMEN

We study the charge transport properties of triangular quantum dot molecules (TQDMs) connected to metallic electrodes, taking into account all correlation functions and relevant charging states. The quantum interference (QI) effect of TQDMs resulting from electron coherent tunneling between quantum dots is revealed and well interpreted by the long distance coherent tunneling mechanism. The spectra of electrical conductance of TQDMs with charge filling from one to six electrons clearly depict the many-body and topological effects. The calculated charge stability diagram for conductance and total occupation numbers matches well with the recent experimental measurements. We also demonstrate that the destructive QI effect on the tunneling current of TQDMs is robust with respect to temperature variation, making the single electron QI transistor feasible at higher temperatures.

9.
Nanotechnology ; 24(17): 175403, 2013 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-23558456

RESUMEN

The thermoelectric properties of a quantum dot array (QDA) embedded in a nanowire connected to metallic electrodes are investigated theoretically via the extended Hubbard model in the Coulomb blockade regime. Coupled quantum dots (QDs) with dot number N = 2-5 are considered. It is found that the thermoelectric properties converge to almost the same results when N approaches 5, indicating that our results are applicable for a QDA with a large number of QDs. Our studies indicate that in order to achieve the optimal figure of merit (ZT), it is preferable to have the QD energy levels above the Fermi energy (EF) of the electrodes of the QDA junction. The effects of QD energy level and interdot coupling variations (due to the QD size and position fluctuation) on the thermoelectric properties are also examined. We find that the QD size fluctuation significantly suppresses the maximum ZT in the weak interdot hopping strength (tℓ,j). We also find that the Seebeck coefficient is insensitive to tℓ,j and the tunneling rates when the QD energy levels are far above EF. For a given tℓ,j and large on-site Coulomb interactions, increasing the QD number N in the QDA would suppress the maximum ZT value. It is possible to achieve an optimal ZT larger than 3 by tailoring the physical parameters of the QDA junction system.

10.
Phys Rev Lett ; 99(8): 086803, 2007 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-17930971

RESUMEN

A multilevel Anderson model is employed to simulate the system of a nanostructure tunnel junction with any number of one-particle energy levels. The tunneling current, including both shell-tunneling and shell-filling cases, is theoretically investigated via the nonequilibrium Green's function method. We obtain a closed form for the spectral function, which is used to analyze the complicated tunneling current spectra of a quantum dot or molecule embedded in a double-barrier junction. We also show that negative differential conductance can be observed in a quantum dot tunnel junction when the Coulomb interactions with neighboring quantum dots are taken into account.


Asunto(s)
Nanoestructuras , Análisis Espectral , Puntos Cuánticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...