Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 8(34): 15795-801, 2016 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-27533610

RESUMEN

Ferroelectric photoelectrodes, other than conventional semiconductors, are alternative photo-absorbers in the process of water splitting. However, the capture of photons and efficient transfer of photo-excited carriers remain as two critical issues in ferroelectric photoelectrodes. In this work, we overcome the aforementioned issues by decorating the ferroelectric BiFeO3 (BFO) surface with Au nanocrystals, and thus improving the photoelectrochemical (PEC) performance of BFO film. We demonstrate that the internal field induced by the spontaneous polarization of BFO can (1) tune the efficiency of the photo-excited carriers' separation and charge transfer characteristics in bare BFO photoelectrodes, and (2) modulate an extra optical absorption within the visible light region, created by the surface plasmon resonance excitation of Au nanocrystals to capture more photons in the Au/BFO heterostructure. This study provides key insights for understanding the tunable features of PEC performance, composed of the heterostructure of noble metals and ferroelectric materials.

2.
Adv Mater ; 28(5): 876-83, 2016 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-26640119

RESUMEN

The ferroelastic strain coupling in multiferroic heterostructures is explored aiming at novel physical effects and fascinating functionality. Ferroelastic domain walls in manganites induced by a stripe BiFeO3 template can modulate the electronic transfer and sufficiently block the magnetic ordering, creating a vast anisotropy. The findings suggest the great importance of ferroelastic strain engineering in material modifications.

3.
Nano Lett ; 14(6): 3314-20, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24871683

RESUMEN

Nanocrystals (NCs) attract tremendous research interests because of their unique properties to meet the demands of functionalities. To date, hybrid NCs with multiple components are developed to meet the rising demands that could be very difficult, or even impossible to be achieved by single-component NCs. Tuning properties by strain via conjugation could be an alternative solution. Strain engineering has been discovered and widely applied to many thin-film materials for tuning physical properties. Then, there is a further question to be addressed in this study: can we take the advantages we have learned in heteroepitaxy of thin films and transfer that into the NC conjugation? In order to demonstrate this possibility, we investigated NC conjugation of BiFeO3 and LaAlO3. We found that change in either LaAlO3-NC or BiFeO3-NC size would change the stability of rhombohedral-to-tetragonal phase transition. The present results show that strain engineering is possible to be realized in not only thin film but also NC conjugation. The same concept should be applicable to other complex oxide systems in order to broaden their practical applications for the rising demands of multifunctionalities.

4.
ACS Nano ; 8(6): 6242-9, 2014 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-24841152

RESUMEN

Self-assembled nanocomposites with a high interface-to-volume ratio offer an opportunity to overcome limitations in current technology, where intriguing transport behaviors can be tailored by the choice of proper interactions of constituents. Here we integrated metallic perovskite oxide SrRuO3-wurzite semiconductor ZnO nanocomposites to investigate the room-temperature metal-insulator transition and its effect on photoresponse. We demonstrate that the band structure at the interface can be tuned by controlling the interface-to-volume ratio of the nanocomposites. Photoinduced carrier injection driven by visible light was detected across the nanocomposites. This work shows the charge interaction of the vertically integrated multiheterostructures by incorporating a controllable interface-to-volume ratio, which is essential for optimization of the design and functionality of electronic devices.

5.
Nanoscale ; 5(14): 6219-23, 2013 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-23732994

RESUMEN

Complex oxide nanocrystals with a spinel structure show their remarkable optical, electronic, mechanical, thermal, and magnetic properties. In this study, we present a simple yet versatile strategy to grow self-assembled epitaxial CoFe2O4 nanocrystals with well-controlled size (less than 10 nm) and single orientation. CoFe2O4 nanocrystals were fabricated via phase separation in a BiFeO3-CoF2O4 ultrathin film by pulsed laser deposition. The coherent strain at the BiFeO3-CoF2O4 interface suppressed the growth of the nanocrystals regardless of substrate temperatures. This strain also resulted in the ferromagnetic anisotropy and interesting conducting behaviors of ultrafine CFO nanocrystals.

6.
Adv Mater ; 25(14): 2040-4, 2013 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-23427105

RESUMEN

Hybrid nanoparticles (NPs) composed of multiple components offer new opportunities for next-generation materials. In this study, a paradigm for the noble metal/ternary complex oxide hybrid NPs is reported by adopting pulsed laser ablation in liquids. As model hybrids, gold-spinel heterodimer (Au-CoFe2O4) and gold-pervoskite heterodimer (Au-SrTiO3) NPs are investigated. This work has demonstrated the diverse playgroup of NP conjugation enlarged by complex oxides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...