Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37906524

RESUMEN

A novel light-absorbing material of high-entropy oxide (HEO) has been synthesized using the hydrothermal method. The HEO has six metals, namely, Fe, Ni, Mn, Cr, Mg, and Cu. The obtained HEO light absorber is demonstrated to show unprecedented broadband absorption, ranging from 310 to 1400 nm. The photodetector having a structure of Ag/HEO/n-Si has been evaluated for its performance. Under the illumination of various light wavelengths, the photodetector exhibits a remarkably wide range of photoresponse from 365 to 1050 nm, giving wide-spectrum photocurrent densities in the order of 1 mA/cm2, a responsibility as high as 3.5 A/W (850 nm), and an external quantum efficiency (EQE) of more than 700% (850 nm), outperforming all of the reported oxide-based photodetectors. The superior device performance is attributed to the excellent light absorbance and EQE of the oxygen vacancy-containing HEO. Moreover, a number of tests, including the abrasion test, temperature endurance, acidic resistance, on-off switching cycling, and 3 dB bandwidth measurement, show the excellent reliability of the obtained HEO-based photodetector.

2.
Nanoscale Adv ; 5(4): 1086-1094, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36798491

RESUMEN

Semiconductor colloidal quantum dots (QDs) have been regarded as promising fluorescent materials for chemical sensing, bio-detection and optical communications; yet it still remains challenging to bring out self-powered photodetectors based solely on QDs because the excited charges within QDs are extremely immobile due to their reduced dimensionalities and they hardly form effective photocurrents. Hence, we have attempted to decouple the light-absorption and charge-transport criteria in order to feature highly-sensitive, rapid-response and self-driven photodetectors based on single-layer carbon QD layers (CQDLs) via facile in situ self-assembling deposition with fine control over thickness. We show explicit dark-current suppression by visualizing charge blocking phenomena and screen effects due to layered CQDL structures, which alleviate the movement of leakage carriers crossing over the CQD interlayers. By examining the distribution of electric fields within CQDLs under light excitation, the spatial dependence of the light-trapping effect within CQDLs was confirmed. These features are strongly associated with the thickness tuning of CQDLs, while 65 nm of CQDL thickness could manifest remarkable photoresponsivity above 9.4 mA W-1 and detectivity above 5.9 × 1012 under broadband light illumination. These results demonstrate the insights gained from an understanding of broadband optoelectronics, which might potentially pave the way for further employment in functional photodetection.

3.
Nanoscale Res Lett ; 17(1): 104, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36315294

RESUMEN

Highly sensitive, simple and reliable colorimetric probe for Cu2+-ion detection was visualized with the L-cysteine functionalized gold nanoparticle (LS-AuNP) probes. The pronounced sensing of Cu2+ with high selectivity was rapidly featured with obvious colour change that enabled to visually sense Cu2+ ions by naked eyes. By employing systemic investigations on crystallinities, elemental compositions, microstructures, surface features, light absorbance, zeta potentials and chemical states of LS-AuNP probes, the oxidation-triggered aggregation effect of LS-AuNP probes was envisioned. The results indicated that the mediation of Cu2+ oxidation coordinately caused the formation of disulfide cystine, rendering the removal of thiol group at AuNPs surfaces. These features reflected the visual colour change for the employment of tracing Cu2+ ions in a quantitative way.

4.
Nanomaterials (Basel) ; 12(11)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35683679

RESUMEN

Light/matter interaction of low-dimensional silicon (Si) strongly correlated with its geometrical features, which resulted in being highly critical for the practical development of Si-based photovoltaic applications. Yet, orientation modulation together with apt control over the size and spacing of aligned Si nanowire (SiNW) arrays remained rather challenging. Here, we demonstrated that the transition of formed SiNWs with controlled diameters and spacing from the crystallographically preferred <100> to <110> orientation was realized through the facile adjustment of etchant compositions. The underlying mechanism was found to correlate with the competing reactions between the formation and removal of oxide at Ag/Si interfaces that could be readily tailored through the concentration ratio of HF to H2O2. By employing inclined SiNWs for the construction of hybrid solar cells, the improved cell performances compared with conventional vertical-SiNW-based hybrid cells were demonstrated, showing the conversion efficiency of 12.23%, approximately 1.12 times higher than that of vertical-SiNW-based hybrid solar cells. These were numerically and experimentally interpreted by the involvement of excellent light-trapping effects covering the wide-angle light illuminations of inclined SiNWs, which paved the potential design for next-generation optoelectronic devices.

5.
J Hazard Mater ; 421: 126674, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34315025

RESUMEN

Photocatalytic degradation of organic dyes has been considered one of the promising solutions that enabled to effectively treat the demanding pollutants in wastewater. Yet, insight into the photocatalytic process under both illumination and dark conditions were hitherto missing. Herein, by virtue of incorporating the core-shell Au@CuxS nanoparticles to the ZnO nanowalls synthesized via all-solution synthesis, the intriguing heterostructures allowed to trigger the extraordinary capability of dye degradation either under light irradiance or dark environment. It was found that the coexistence of bi-constituted Cu2S/CuS shells on Au nanoparticles obtained with turning the concentrations of sulfurization acted as the decisive role on day-night active degradation performance, where the degradation efficiency was more than 8.3 times beyond sole ZnO sheets. The mediation of remarkable visible-light absorption and efficient charge separation due to band alignment of heterojunctions were responsible for the improved photodegradation efficiency under visible illuminations. Moreover, at dark environment, the involving peroxidase-like activity of CuxS shells with the mediation of Au nanoparticles facilitated the catalytic formation of hydroxyl radicals, manifesting the oxidative degradation of MB dye. Such all-day active photocatalysts further displayed the capability for the recycling treatment of MB dye, which offered the pathways to potentially treat the organic wastewater.


Asunto(s)
Nanopartículas del Metal , Óxido de Zinc , Catálisis , Oro , Fotólisis
6.
RSC Adv ; 11(29): 17840-17848, 2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35480223

RESUMEN

Recently, adsorption techniques have emerged as practical and effective methods for removing organic dyes, dramatically extending practical capabilities for treating deleterious pollutants in wastewater. However, an urgent issue restricting the performance of these techniques is that no available absorbents that can be used to treat both cationic and anionic organic dyes have been made with simple and reliable methods until now. Herein, we report a green synthetic strategy for the preparation of SnFe2O4/ZnO nanoparticles decorated on reduced graphene oxide (rGO), exhibiting a remarkably large surface area (120.33 m2 g-1). Substantial adsorption efficiency for removing MB dye was achieved, with 91.3% removal within 20 min at room temperature, and efficiencies of 79.6 to 92.8% are maintained as the pH conditions are varied from 3 to 11. Moreover, under mixed-dye conditions, involving MB, RhB, MO, RB5, and R6G organic materials, with dye concentrations ranging from 0.005 mM to 0.09 mM, an adsorption efficiency of above 50% can be reliably reached within 20 min. Such striking features can be interpreted as arising from a synergistic effect involving the hybrid composite based on a rGO matrix with negative charge and the dispersed SnFe2O4/ZnO nanoparticles with positive charge, additionally offering abundant adsorptive sites to allow reliable dye-adsorption kinetics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA