Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genome Biol ; 25(1): 85, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570851

RESUMEN

Cell type annotation and lineage construction are two of the most critical tasks conducted in the analyses of single-cell RNA sequencing (scRNA-seq). Four recent scRNA-seq studies of differentiating xylem propose four models on differentiating xylem development in Populus. The differences are mostly caused by the use of different strategies for cell type annotation and subsequent lineage interpretation. Here, we emphasize the necessity of using in situ transcriptomes and anatomical information to construct the most plausible xylem development model.


Asunto(s)
Populus , Populus/genética , Populus/metabolismo , Perfilación de la Expresión Génica , Xilema/genética , Xilema/crecimiento & desarrollo , Transcriptoma , Análisis de la Célula Individual
2.
Arch Pharm (Weinheim) ; 357(5): e2300435, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38314850

RESUMEN

Phenotypic drug discovery (PDD) is an effective drug discovery approach by observation of therapeutic effects on disease phenotypes, especially in complex disease systems. Triple-negative breast cancer (TNBC) is composed of several complex disease features, including high tumor heterogeneity, high invasive and metastatic potential, and a lack of effective therapeutic targets. Therefore, identifying effective and novel agents through PDD is a current trend in TNBC drug development. In this study, 23 novel small molecules were synthesized using 4-(phenylsulfonyl)morpholine as a pharmacophore. Among these derivatives, GL24 (4m) exhibited the lowest half-maximal inhibitory concentration value (0.90 µM) in MDA-MB-231 cells. To investigate the tumor-suppressive mechanisms of GL24, transcriptomic analyses were used to detect the perturbation for gene expression upon GL24 treatment. Followed by gene ontology (GO) analysis, gene set enrichment analysis (GSEA), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, multiple ER stress-dependent tumor suppressive signals were identified, such as unfolded protein response (UPR), p53 pathway, G2/M checkpoint, and E2F targets. Most of the identified pathways triggered by GL24 eventually led to cell-cycle arrest and then to apoptosis. In summary, we developed a novel 4-(phenylsulfonyl)morpholine derivative GL24 with a strong potential for inhibiting TNBC cell growth through ER stress-dependent tumor suppressive signals.


Asunto(s)
Antineoplásicos , Morfolinas , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Humanos , Morfolinas/farmacología , Morfolinas/síntesis química , Morfolinas/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Femenino , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Relación Estructura-Actividad , Apoptosis/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Relación Dosis-Respuesta a Droga , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Estructura Molecular
3.
Genome Biol ; 24(1): 3, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36624504

RESUMEN

BACKGROUND: Xylem, the most abundant tissue on Earth, is responsible for lateral growth in plants. Typical xylem has a radial system composed of ray parenchyma cells and an axial system of fusiform cells. In most angiosperms, fusiform cells comprise vessel elements for water transportation and libriform fibers for mechanical support, while both functions are performed by tracheids in other vascular plants such as gymnosperms. Little is known about the developmental programs and evolutionary relationships of these xylem cell types. RESULTS: Through both single-cell and laser capture microdissection transcriptomic profiling, we determine the developmental lineages of ray and fusiform cells in stem-differentiating xylem across four divergent woody angiosperms. Based on cross-species analyses of single-cell clusters and overlapping trajectories, we reveal highly conserved ray, yet variable fusiform, lineages across angiosperms. Core eudicots Populus trichocarpa and Eucalyptus grandis share nearly identical fusiform lineages, whereas the more basal angiosperm Liriodendron chinense has a fusiform lineage distinct from that in core eudicots. The tracheids in the basal eudicot Trochodendron aralioides, an evolutionarily reversed trait, exhibit strong transcriptomic similarity to vessel elements rather than libriform fibers. CONCLUSIONS: This evo-devo framework provides a comprehensive understanding of the formation of xylem cell lineages across multiple plant species spanning over a hundred million years of evolutionary history.


Asunto(s)
Transcriptoma , Xilema , Xilema/genética , Madera , Perfilación de la Expresión Génica , Plantas
4.
BMC Biol ; 19(1): 214, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34560855

RESUMEN

BACKGROUND: Yeast one-hybrid (Y1H) is a common technique for identifying DNA-protein interactions, and robotic platforms have been developed for high-throughput analyses to unravel the gene regulatory networks in many organisms. Use of these high-throughput techniques has led to the generation of increasingly large datasets, and several software packages have been developed to analyze such data. We previously established the currently most efficient Y1H system, meiosis-directed Y1H; however, the available software tools were not designed for processing the additional parameters suggested by meiosis-directed Y1H to avoid false positives and required programming skills for operation. RESULTS: We developed a new tool named GateMultiplex with high computing performance using C++. GateMultiplex incorporated a graphical user interface (GUI), which allows the operation without any programming skills. Flexible parameter options were designed for multiple experimental purposes to enable the application of GateMultiplex even beyond Y1H platforms. We further demonstrated the data analysis from other three fields using GateMultiplex, the identification of lead compounds in preclinical cancer drug discovery, the crop line selection in precision agriculture, and the ocean pollution detection from deep-sea fishery. CONCLUSIONS: The user-friendly GUI, fast C++ computing speed, flexible parameter setting, and applicability of GateMultiplex facilitate the feasibility of large-scale data analysis in life science fields.


Asunto(s)
Saccharomyces cerevisiae , Análisis de Datos , Redes Reguladoras de Genes , Robótica , Saccharomyces cerevisiae/genética , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...