Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Exp Med ; 221(5)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38512136

RESUMEN

Diffuse large B cell lymphoma of activated B cell type (ABC-DLBCL), a major cell-of-origin DLBCL subtype, is characterized by chronic active B cell receptor (BCR) signaling and NF-κB activation, which can be explained by activating mutations of the BCR signaling cascade in a minority of cases. We demonstrate that autonomous BCR signaling, akin to its essential pathogenetic role in chronic lymphocytic leukemia (CLL), can explain chronic active BCR signaling in ABC-DLBCL. 13 of 18 tested DLBCL-derived BCR, including 12 cases selected for expression of IgM, induced spontaneous calcium flux and increased phosphorylation of the BCR signaling cascade in murine triple knockout pre-B cells without antigenic stimulation or external BCR crosslinking. Autonomous BCR signaling was associated with IgM isotype, dependent on somatic BCR mutations and individual HCDR3 sequences, and largely restricted to non-GCB DLBCL. Autonomous BCR signaling represents a novel immunological oncogenic driver mechanism in DLBCL originating from individual BCR sequences and adds a new dimension to currently proposed genetics- and transcriptomics-based DLBCL classifications.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Linfoma de Células B Grandes Difuso , Animales , Ratones , Linfocitos B , Linfoma de Células B Grandes Difuso/genética , Receptores de Antígenos de Linfocitos B , Inmunoglobulina M
2.
Exp Hematol Oncol ; 13(1): 34, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528594

RESUMEN

BACKGROUND: Mantle cell lymphoma (MCL) is a chronically relapsing malignancy with deregulated cell cycle progression. We analyzed efficacy, mode of action, and predictive markers of susceptibility to palbociclib, an approved CDK 4/6 inhibitor, and its combination with venetoclax, a BCL2 inhibitor. METHODS: A panel of nine MCL cell lines were used for in vitro experiments. Four patient derived xenografts (PDX) obtained from patients with chemotherapy and ibrutinib-refractory MCL were used for in vivo proof-of-concept studies. Changes of the mitochondrial membrane potential, energy-metabolic pathways, AKT activity, and pro-apoptotic priming of MCL cells were evaluated by JC-1 staining, Seahorse XF analyser, genetically encoded fluorescent AKT reporter, and BH3 profiling, respectively. MCL clones with gene knockout or transgenic (over)expression of CDKN2A, MYC, CDK4, and RB1 were used to estimate impact of these aberrations on sensitivity to palbociclib, and venetoclax. RESULTS: Co-targeting MCL cells with palbociclib and venetoclax induced cytotoxic synergy in vitro and in vivo. Molecular mechanisms responsible for the observed synthetic lethality comprised palbociclib-mediated downregulation of anti-apoptotic MCL1, increased levels of proapoptotic BIM bound on both BCL2, and BCL-XL and increased pro-apoptotic priming of MCL cells mediated by BCL2-independent mechanisms, predominantly palbociclib-triggered metabolic and mitochondrial stress. Loss of RB1 resulted in palbociclib resistance, while deletion of CDKN2A or overexpression of CDK4, and MYC genes did not change sensitivity to palbociclib. CONCLUSIONS: Our data strongly support investigation of the chemotherapy-free palbociclib and venetoclax combination as an innovative treatment strategy for post-ibrutinib MCL patients without RB1 deletion.

3.
Int J Mol Sci ; 25(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38203179

RESUMEN

B-cell receptor (BCR) is a B cell hallmark surface complex regulating multiple cellular processes in normal as well as malignant B cells. Igα (CD79a)/Igß (CD79b) are essential components of BCR that are indispensable for its functionality, signal initiation, and signal transduction. CD79a/CD79b-mediated BCR signaling is required for the survival of normal as well as malignant B cells via a wide signaling network. Recent studies identified the great complexity of this signaling network and revealed the emerging role of CD79a/CD79b in signal integration. In this review, we have focused on functional features of CD79a/CD79b, summarized signaling consequences of CD79a/CD79b post-translational modifications, and highlighted specifics of CD79a/CD79b interactions within BCR and related signaling cascades. We have reviewed the complex role of CD79a/CD79b in multiple aspects of normal B cell biology and how is the normal BCR signaling affected by lymphoid neoplasms associated CD79A/CD79B mutations. We have also summarized important unresolved questions and highlighted issues that remain to be explored for better understanding of CD79a/CD79b-mediated signal transduction and the eventual identification of additional therapeutically targetable BCR signaling vulnerabilities.


Asunto(s)
Receptores de Antígenos de Linfocitos B , Transducción de Señal , Receptores de Antígenos de Linfocitos B/genética , Membrana Celular , Cognición , Mutación
4.
Ann Hematol ; 101(11): 2393-2403, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36074181

RESUMEN

Somatic mutations of genes involved in NF-κB, PI3K/AKT, NOTCH, and JAK/STAT signaling pathways play an important role in the pathogenesis of Hodgkin lymphoma (HL). HL tumor cells form only about 5% of the tumor mass; however, it was shown that HL tumor-derived DNA could be detected in the bloodstream. This circulating tumor DNA (ctDNA) reflects the genetic profile of HL tumor cells and can be used for qualitative and quantitative analysis of tumor-specific somatic DNA mutations within the concept of liquid biopsy. Overall, the most frequently mutated gene in HL is STAT6; however, the exact spectrum of mutations differs between individual HL histological subtypes. Importantly, reduction of ctDNA plasma levels after initial treatment is highly correlated with prognosis. Therefore, ctDNA shows great promise as a novel tool for non-invasive tumor genome analysis for biomarker driven therapy as well as for superior minimal residual disease monitoring and treatment resistance detection. Here, we summarize the recent advancements of ctDNA analysis in HL with focus on ctDNA detection methodologies, genetic profiling of HL and its clonal evolution, and the emerging prognostic value of ctDNA.


Asunto(s)
ADN Tumoral Circulante , Enfermedad de Hodgkin , Biomarcadores de Tumor/genética , ADN Tumoral Circulante/genética , ADN de Neoplasias/genética , Enfermedad de Hodgkin/diagnóstico , Enfermedad de Hodgkin/genética , Humanos , Mutación , FN-kappa B , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt
5.
Cytometry A ; 101(10): 818-834, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34128311

RESUMEN

Assays based on Förster resonance energy transfer (FRET) can be used to study many processes in cell biology. Although this is most often done with microscopy for fluorescence detection, we report two ways to measure FRET in living cells by flow cytometry. Using a conventional flow cytometer and the "3-cube method" for intensity-based calculation of FRET efficiency, we measured the enzymatic activity of specific kinases in cells expressing a genetically-encoded reporter. For both AKT and protein kinase A, the method measured kinase activity in time-course, dose-response, and kinetic assays. Using the Cytek Aurora spectral flow cytometer, which applies linear unmixing to emission measured in multiple wavelength ranges, FRET from the same reporters was measured with greater single-cell precision, in real time and in the presence of other fluorophores. Results from gene-knockout studies suggested that spectral flow cytometry might enable the sorting of cells on the basis of FRET. The methods we present provide convenient and flexible options for using FRET with flow cytometry in studies of cell biology.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Proteínas Proto-Oncogénicas c-akt , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citometría de Flujo/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
6.
Cancer Res ; 81(23): 6029-6043, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34625423

RESUMEN

The family of PIM serine/threonine kinases includes three highly conserved oncogenes, PIM1, PIM2, and PIM3, which regulate multiple prosurvival pathways and cooperate with other oncogenes such as MYC. Recent genomic CRISPR-Cas9 screens further highlighted oncogenic functions of PIMs in diffuse large B-cell lymphoma (DLBCL) cells, justifying the development of small-molecule PIM inhibitors and therapeutic targeting of PIM kinases in lymphomas. However, detailed consequences of PIM inhibition in DLBCL remain undefined. Using chemical and genetic PIM blockade, we comprehensively characterized PIM kinase-associated prosurvival functions in DLBCL and the mechanisms of PIM inhibition-induced toxicity. Treatment of DLBCL cells with SEL24/MEN1703, a pan-PIM inhibitor in clinical development, decreased BAD phosphorylation and cap-dependent protein translation, reduced MCL1 expression, and induced apoptosis. PIM kinases were tightly coexpressed with MYC in diagnostic DLBCL biopsies, and PIM inhibition in cell lines and patient-derived primary lymphoma cells decreased MYC levels as well as expression of multiple MYC-dependent genes, including PLK1. Chemical and genetic PIM inhibition upregulated surface CD20 levels in an MYC-dependent fashion. Consistently, MEN1703 and other clinically available pan-PIM inhibitors synergized with the anti-CD20 monoclonal antibody rituximab in vitro, increasing complement-dependent cytotoxicity and antibody-mediated phagocytosis. Combined treatment with PIM inhibitor and rituximab suppressed tumor growth in lymphoma xenografts more efficiently than either drug alone. Taken together, these results show that targeting PIM in DLBCL exhibits pleiotropic effects that combine direct cytotoxicity with potentiated susceptibility to anti-CD20 antibodies, justifying further clinical development of such combinatorial strategies. SIGNIFICANCE: These findings demonstrate that inhibition of PIM induces DLBCL cell death via MYC-dependent and -independent mechanisms and enhances the therapeutic response to anti-CD20 antibodies by increasing CD20 expression.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-pim-1/antagonistas & inhibidores , Rituximab/farmacología , Animales , Antígenos CD20 , Antineoplásicos Inmunológicos/farmacología , Apoptosis , Proliferación Celular , Femenino , Humanos , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología , Ratones , Ratones SCID , Fosforilación , Proteínas Proto-Oncogénicas c-myc/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Leuk Lymphoma ; 62(4): 861-867, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33238780

RESUMEN

Platelet/endothelial cell adhesion molecule 1 (PECAM-1, CD31) is an immunoglobulin superfamily member expressed on the surface of platelets, leukocytes and endothelial cells. The role of CD31 in biology of lymphomas has not yet been systemically studied. Expression of cell surface CD31 was analyzed by flow cytometry on primary MCL cells isolated from peripheral blood, bone marrow or malignant effusions obtained from 29 newly diagnosed MCL patients. CD31 was significantly more expressed in patients with documented extranodal involvement. Knock-down of CD31 expression in JEKO1 and MINO MCL cell lines hampered their subcutaneous engraftment in immunodeficient mice and prolonged overall survival of intravenously-xenografted animals. In contrast, transgenic overexpression of CD31 accelerated growth of subcutaneous JEKO1 and MINO tumors, shortened overall survival of intravenously-xenografted mice, and resulted in significantly increased frequency of extramedullary murine tissue infiltration Our observations suggest that CD31 facilitate survival and regulate extranodal spread of MCL cells.


Asunto(s)
Linfoma de Células del Manto , Adulto , Animales , Plaquetas , Médula Ósea , Células Endoteliales , Humanos , Linfoma de Células del Manto/genética , Ratones , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética
8.
Blood Adv ; 4(18): 4382-4392, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32926124

RESUMEN

Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma; 40% of patients relapse after a complete response or are refractory to therapy. To survive, the activated B-cell (ABC) subtype of DLBCL relies upon B-cell receptor signaling, which can be modulated by the activity of Bruton tyrosine kinase (BTK). Targeting BTK with ibrutinib, an inhibitor, provides a therapeutic approach for this subtype of DLBCL. However, non-Hodgkin lymphoma is often resistant to ibrutinib or acquires resistance soon after exposure. We explored how this resistance develops. We generated 3 isogenic ibrutinib-resistant DLBCL cell lines and investigated the deregulated pathways known to be associated with tumorigenic properties. Reduced levels of BTK and enhanced phosphatidylinositol 3-kinase (PI3K)/AKT signaling were hallmarks of these ibrutinib-resistant cells. Upregulation of PI3K-ß expression was demonstrated to drive resistance in ibrutinib-resistant cells, and resistance was reversed by the blocking activity of PI3K-ß/δ. Treatment with the selective PI3K-ß/δ dual inhibitor KA2237 reduced both tumorigenic properties and survival-based PI3K/AKT/mTOR signaling of these ibrutinib-resistant cells. In addition, combining KA2237 with currently available chemotherapeutic agents synergistically inhibited metabolic growth. This study elucidates the compensatory upregulated PI3K/AKT axis that emerges in ibrutinib-resistant cells.


Asunto(s)
Linfoma de Células B Grandes Difuso , Fosfatidilinositol 3-Quinasa , Agammaglobulinemia Tirosina Quinasa , Línea Celular Tumoral , Humanos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Recurrencia Local de Neoplasia , Fosfatidilinositol 3-Quinasas/genética
9.
Int J Med Mushrooms ; 20(2): 165-175, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29773008

RESUMEN

The antimicrobial, cytotoxic, anti-inflammatory, and antioxidant properties of aqueous extracts of raw and culinary processed shiitake mushrooms were evaluated and compared with those of lenthionine (1,2,3,5,6-penta-thiepane), the principal aroma-bearing substance of the shiitake medicinal mushroom (Lentinus edodes). Antimicrobial activity was tested using a panel of 4 strains of bacteria, 2 yeasts, and 2 fungi. Cytotoxic properties were evaluated against 3 cell lines (HepG2, HeLa, PaTu), whereas the anti-inflammatory activity of tested samples was assayed based on their ability to attenuate the secretion of the cytokine tumor necrosis factor-α. Antioxidant activity was measured using in vitro DPPH and ABTS assays. It was found that lenthionine possesses significant antimicrobial properties; it is remarkably effective in inhibiting the growth of yeasts and fungi (minimum inhibitory concentration, 2-8 µg/mL) and thus is comparable to standard antifungal agents. Lenthionine is also able to decrease significantly the production of tumor necrosis factor-a and thus could be at least partly responsible for the observed anti-inflammatory effect of shiitake. On the other hand, lenthionine does not seem to contribute significantly to the well-known anticancer and antioxidant effects of the mushroom.


Asunto(s)
Antibacterianos/farmacología , Antiinflamatorios/farmacología , Antifúngicos/farmacología , Antioxidantes/farmacología , Citotoxinas/farmacología , Hongos Shiitake/química , Antibacterianos/aislamiento & purificación , Antiinflamatorios/aislamiento & purificación , Antifúngicos/aislamiento & purificación , Antioxidantes/aislamiento & purificación , Bacterias/efectos de los fármacos , Línea Celular Tumoral , Citocinas/efectos de los fármacos , Citotoxinas/aislamiento & purificación , Hongos/efectos de los fármacos , Células HeLa , Células Hep G2 , Humanos , Pruebas de Sensibilidad Microbiana , Tiepinas/química , Tiepinas/farmacología , Levaduras/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...