Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38925224

RESUMEN

PURPOSE: The focal radiation therapy (RT) boost technique was shown in a phase III randomized controlled trial (RCT) to improve prostate cancer outcomes without increasing toxicity. This technique relies on the accurate delineation of prostate tumors on MRI. A recent prospective study evaluated radiation oncologists' accuracy when asked to delineate prostate tumors on MRI and demonstrated high variability in tumor contours. We sought to evaluate the impact of contour variability and inaccuracy on predicted clinical outcomes. We hypothesized that radiation oncologists' contour inaccuracies would yield meaningfully worse clinical outcomes. METHODS AND MATERIALS: Forty-five radiation oncologists and 2 expert radiologists contoured prostate tumors on 30 patient cases. Of these cases, those with CT simulation or diagnostic CT available were selected for analysis. A knowledge-based planning model was developed to generate focal RT boost plans for each contour per the RCT protocol. The probability of biochemical failure (BF) was determined using a model from the RCT. The primary metric evaluated was delta BF (DBF = Participant BF - Expert BF). An absolute increase in BF ≥5% was considered clinically meaningful. RESULTS: Eight patient cases and 394 target volumes for focal RT boost planning were included in this analysis. In general, participant plans were associated with worse predicted clinical outcomes compared to the expert plan, with an average absolute increase in BF of 4.3%. Of participant plans, 37% were noted to have an absolute increase in BF of 5% or more. CONCLUSIONS: Radiation oncologists' attempts to contour tumor targets for focal RT boost are frequently inaccurate enough to yield meaningfully inferior clinical outcomes for patients.

2.
Front Oncol ; 13: 1237720, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781199

RESUMEN

Purpose: Dynamic contrast-enhanced MRI (DCE) and apparent diffusion coefficient (ADC) are currently used to evaluate treatment response of breast cancer. The purpose of the current study was to evaluate the three-component Restriction Spectrum Imaging model (RSI3C), a recent diffusion-weighted MRI (DWI)-based tumor classification method, combined with elastic image registration, to automatically monitor breast tumor size throughout neoadjuvant therapy. Experimental design: Breast cancer patients (n=27) underwent multi-parametric 3T MRI at four time points during treatment. Elastically-registered DWI images were used to generate an automatic RSI3C response classifier, assessed against manual DCE tumor size measurements and mean ADC values. Predictions of therapy response during treatment and residual tumor post-treatment were assessed using non-pathological complete response (non-pCR) as an endpoint. Results: Ten patients experienced pCR. Prediction of non-pCR using ROC AUC (95% CI) for change in measured tumor size from pre-treatment time point to early-treatment time point was 0.65 (0.38-0.92) for the RSI3C classifier, 0.64 (0.36-0.91) for DCE, and 0.45 (0.16-0.75) for change in mean ADC. Sensitivity for detection of residual disease post-treatment was 0.71 (0.44-0.90) for the RSI3C classifier, compared to 0.88 (0.64-0.99) for DCE and 0.76 (0.50-0.93) for ADC. Specificity was 0.90 (0.56-1.00) for the RSI3C classifier, 0.70 (0.35-0.93) for DCE, and 0.50 (0.19-0.81) for ADC. Conclusion: The automatic RSI3C classifier with elastic image registration suggested prediction of response to treatment after only three weeks, and showed performance comparable to DCE for assessment of residual tumor post-therapy. RSI3C may guide clinical decision-making and enable tailored treatment regimens and cost-efficient evaluation of neoadjuvant therapy of breast cancer.

3.
Int J Radiat Oncol Biol Phys ; 117(5): 1145-1152, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37453559

RESUMEN

PURPOSE: In a phase III randomized trial, adding a radiation boost to tumor(s) visible on MRI improved prostate cancer (PCa) disease-free and metastasis-free survival without additional toxicity. Radiation oncologists' ability to identify prostate tumors is critical to widely adopting intraprostatic tumor radiotherapy boost for patients. A diffusion MRI biomarker, called the Restriction Spectrum Imaging restriction score (RSIrs), has been shown to improve radiologists' identification of clinically significant PCa. We hypothesized that (1) radiation oncologists would find accurately delineating PCa tumors on conventional MRI challenging and (2) using RSIrs maps would improve radiation oncologists' accuracy for PCa tumor delineation. METHODS AND MATERIALS: In this multi-institutional, international, prospective study, 44 radiation oncologists (participants) and 2 expert radiologists (experts) contoured prostate tumors on 39 total patient cases using conventional MRI with or without RSIrs maps. Participant volumes were compared to the consensus expert volumes. Contouring accuracy metrics included percent overlap with expert volume, Dice coefficient, conformal number, and maximum distance beyond expert volume. RESULTS: 1604 participant volumes were produced. 40 of 44 participants (91%) completely missed ≥1 expert-defined target lesion without RSIrs, compared to 13 of 44 (30%) with RSIrs maps. On conventional MRI alone, 134 of 762 contour attempts (18%) completely missed the target, compared to 18 of 842 (2%) with RSIrs maps. Use of RSIrs maps improved all contour accuracy metrics by approximately 50% or more. Mixed effects modeling confirmed that RSIrs maps were the main variable driving improvement in all metrics. System Usability Scores indicated RSIrs maps significantly improved the contouring experience (72 vs. 58, p < 0.001). CONCLUSIONS: Radiation oncologists struggle with accurately delineating visible PCa tumors on conventional MRI. RSIrs maps improve radiation oncologists' ability to target MRI-visible tumors for prostate tumor boost.


Asunto(s)
Neoplasias de la Próstata , Planificación de la Radioterapia Asistida por Computador , Masculino , Humanos , Estudios Prospectivos , Planificación de la Radioterapia Asistida por Computador/métodos , Oncólogos de Radiación , Imagen por Resonancia Magnética/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/patología
4.
Eur Urol Open Sci ; 47: 20-28, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36601040

RESUMEN

Background: Multiparametric magnetic resonance imaging (mpMRI) improves detection of clinically significant prostate cancer (csPCa), but the subjective Prostate Imaging Reporting and Data System (PI-RADS) system and quantitative apparent diffusion coefficient (ADC) are inconsistent. Restriction spectrum imaging (RSI) is an advanced diffusion-weighted MRI technique that yields a quantitative imaging biomarker for csPCa called the RSI restriction score (RSIrs). Objective: To evaluate RSIrs for automated patient-level detection of csPCa. Design setting and participants: We retrospectively studied all patients (n = 151) who underwent 3 T mpMRI and RSI (a 2-min sequence on a clinical scanner) for suspected prostate cancer at University of California San Diego during 2017-2019 and had prostate biopsy within 180 d of MRI. Intervention: We calculated the maximum RSIrs and minimum ADC within the prostate, and obtained PI-RADS v2.1 from medical records. Outcome measurements and statistical analysis: We compared the performance of RSIrs, ADC, and PI-RADS for the detection of csPCa (grade group ≥2) on the best available histopathology (biopsy or prostatectomy) using the area under the curve (AUC) with two-tailed α = 0.05. We also explored whether the combination of PI-RADS and RSIrs might be superior to PI-RADS alone and performed subset analyses within the peripheral and transition zones. Results and limitations: AUC values for ADC, RSIrs, and PI-RADS were 0.48 (95% confidence interval: 0.39, 0.58), 0.78 (0.70, 0.85), and 0.77 (0.70, 0.84), respectively. RSIrs and PI-RADS were each superior to ADC for patient-level detection of csPCa (p < 0.0001). RSIrs alone was comparable with PI-RADS (p = 0.8). The combination of PI-RADS and RSIrs had an AUC of 0.85 (0.78, 0.91) and was superior to either PI-RADS or RSIrs alone (p < 0.05). Similar patterns were seen in the peripheral and transition zones. Conclusions: RSIrs is a promising quantitative marker for patient-level csPCa detection, warranting a prospective study. Patient summary: We evaluated a rapid, advanced prostate magnetic resonance imaging technique called restriction spectrum imaging to see whether it could give an automated score that predicted the presence of clinically significant prostate cancer. The automated score worked about as well as expert radiologists' interpretation. The combination of the radiologists' scores and automated score might be better than either alone.

5.
JAMA Netw Open ; 6(1): e2253191, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36701153

RESUMEN

Importance: Neurodevelopmental disabilities are commonly associated with congenital heart disease (CHD), but medical and sociodemographic factors explain only one-third of the variance in outcomes. Objective: To examine whether potentially damaging de novo variants (dDNVs) in genes not previously linked to neurodevelopmental disability are associated with neurologic outcomes in CHD and, post hoc, whether some dDNVs or rare putative loss-of-function variants (pLOFs) in specific gene categories are associated with outcomes. Design, Setting, and Participants: This cross-sectional study was conducted from September 2017 to June 2020 in 8 US centers. Inclusion criteria were CHD, age 8 years or older, and available exome sequencing data. Individuals with pathogenic gene variants in known CHD- or neurodevelopment-related genes were excluded. Cases and controls were frequency-matched for CHD class, age group, and sex. Exposures: Heterozygous for (cases) or lacking (controls) dDNVs in genes not previously associated with neurodevelopmental disability. Participants were separately stratified as heterozygous or not heterozygous for dDNVs and/or pLOFs in 4 gene categories: chromatin modifying, constrained, high level of brain expression, and neurodevelopmental risk. Main Outcomes and Measures: Main outcomes were neurodevelopmental assessments of academic achievement, intelligence, fine motor skills, executive function, attention, memory, social cognition, language, adaptive functioning, and anxiety and depression, as well as 7 structural, diffusion, and functional brain magnetic resonance imaging metrics. Results: The study cohort included 221 participants in the post hoc analysis and 219 in the case-control analysis (109 cases [49.8%] and 110 controls [50.2%]). Of those 219 participants (median age, 15.0 years [IQR, 10.0-21.2 years]), 120 (54.8%) were male. Cases and controls had similar primary outcomes (reading composite, spelling, and math computation on the Wide Range Achievement Test, Fourth Edition) and secondary outcomes. dDNVs and/or pLOFs in chromatin-modifying genes were associated with lower mean (SD) verbal comprehension index scores (91.4 [20.4] vs 103.4 [17.8]; P = .01), Social Responsiveness Scale, Second Edition, scores (57.3 [17.2] vs 49.4 [11.2]; P = .03), and Wechsler Adult Intelligence Scale, Fourth Edition, working memory scores (73.8 [16.4] vs 97.2 [15.7]; P = .03), as well as higher likelihood of autism spectrum disorder (28.6% vs 5.2%; P = .01). dDNVs and/or pLOFs in constrained genes were associated with lower mean (SD) scores on the Wide Range Assessment of Memory and Learning, Second Edition (immediate story memory: 9.7 [3.7] vs 10.7 [3.0]; P = .03; immediate picture memory: 7.8 [3.1] vs 9.0 [2.9]; P = .008). Adults with dDNVs and/or pLOFs in genes with a high level of brain expression had greater Conners adult attention-deficit hyperactivity disorder rating scale scores (mean [SD], 55.5 [15.4] vs 46.6 [12.3]; P = .007). Conclusions and Relevance: The study findings suggest neurodevelopmental outcomes are not associated with dDNVs as a group but may be worse in individuals with dDNVs and/or pLOFs in some gene sets, such as chromatin-modifying genes. Future studies should confirm the importance of specific gene variants to brain function and structure.


Asunto(s)
Trastorno del Espectro Autista , Cardiopatías Congénitas , Humanos , Masculino , Adolescente , Niño , Femenino , Trastorno del Espectro Autista/complicaciones , Estudios Transversales , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/complicaciones , Función Ejecutiva , Cromatina
6.
Radiol Imaging Cancer ; 5(1): e210115, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36705559

RESUMEN

Purpose To develop a multicompartmental signal model for whole-body diffusion-weighted imaging (DWI) and apply it to study the diffusion properties of normal tissue and metastatic prostate cancer bone lesions in vivo. Materials and Methods This prospective study (ClinicalTrials.gov: NCT03440554) included 139 men with prostate cancer (mean age, 70 years ± 9 [SD]). Multicompartmental models with two to four tissue compartments were fit to DWI data from whole-body scans to determine optimal compartmental diffusion coefficients. Bayesian information criterion (BIC) and model-fitting residuals were calculated to quantify model complexity and goodness of fit. Diffusion coefficients for the optimal model (having lowest BIC) were used to compute compartmental signal-contribution maps. The signal intensity ratio (SIR) of bone lesions to normal-appearing bone was measured on these signal-contribution maps and on conventional DWI scans and compared using paired t tests (α = .05). Two-sample t tests (α = .05) were used to compare compartmental signal fractions between lesions and normal-appearing bone. Results Lowest BIC was observed from the four-compartment model, with optimal compartmental diffusion coefficients of 0, 1.1 × 10-3, 2.8 × 10-3, and >3.0 ×10-2 mm2/sec. Fitting residuals from this model were significantly lower than from conventional apparent diffusion coefficient mapping (P < .001). Bone lesion SIR was significantly higher on signal-contribution maps of model compartments 1 and 2 than on conventional DWI scans (P < .008). The fraction of signal from compartments 2, 3, and 4 was also significantly different between metastatic bone lesions and normal-appearing bone tissue (P ≤ .02). Conclusion The four-compartment model best described whole-body diffusion properties. Compartmental signal contributions from this model can be used to examine prostate cancer bone involvement. Keywords: Whole-Body MRI, Diffusion-weighted Imaging, Restriction Spectrum Imaging, Diffusion Signal Model, Bone Metastases, Prostate Cancer Clinical trial registration no. NCT03440554 Supplemental material is available for this article. © RSNA, 2023 See also commentary by Margolis in this issue.


Asunto(s)
Neoplasias Óseas , Neoplasias de la Próstata , Masculino , Humanos , Anciano , Estudios Prospectivos , Teorema de Bayes , Imagen de Difusión por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/secundario
7.
Cancers (Basel) ; 14(13)2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35804972

RESUMEN

Diffusion-weighted MRI (DW-MRI) offers a potential adjunct to dynamic contrast-enhanced MRI to discriminate benign from malignant breast lesions by yielding quantitative information about tissue microstructure. Multi-component modeling of the DW-MRI signal over an extended b-value range (up to 3000 s/mm2) theoretically isolates the slowly diffusing (restricted) water component in tissues. Previously, a three-component restriction spectrum imaging (RSI) model demonstrated the ability to distinguish malignant lesions from healthy breast tissue. We further evaluated the utility of this three-component model to differentiate malignant from benign lesions and healthy tissue in 12 patients with known malignancy and synchronous pathology-proven benign lesions. The signal contributions from three distinct diffusion compartments were measured to generate parametric maps corresponding to diffusivity on a voxel-wise basis. The three-component model discriminated malignant from benign and healthy tissue, particularly using the restricted diffusion C1 compartment and product of the restricted and intermediate diffusion compartments (C1 and C2). However, benign lesions and healthy tissue did not significantly differ in diffusion characteristics. Quantitative discrimination of these three tissue types (malignant, benign, and healthy) in non-pre-defined lesions may enhance the clinical utility of DW-MRI in reducing excessive biopsies and aiding in surveillance and surgical evaluation without repeated exposure to gadolinium contrast.

8.
Sci Rep ; 12(1): 265, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34997164

RESUMEN

Diffusion-weighted magnetic resonance imaging (DWI) of the musculoskeletal system has various applications, including visualization of bone tumors. However, DWI acquired with echo-planar imaging is susceptible to distortions due to static magnetic field inhomogeneities. This study aimed to estimate spatial displacements of bone and to examine whether distortion corrected DWI images more accurately reflect underlying anatomy. Whole-body MRI data from 127 prostate cancer patients were analyzed. The reverse polarity gradient (RPG) technique was applied to DWI data to estimate voxel-level distortions and to produce a distortion corrected DWI dataset. First, an anatomic landmark analysis was conducted, in which corresponding vertebral landmarks on DWI and anatomic T2-weighted images were annotated. Changes in distance between DWI- and T2-defined landmarks (i.e., changes in error) after distortion correction were calculated. In secondary analyses, distortion estimates from RPG were used to assess spatial displacements of bone metastases. Lastly, changes in mutual information between DWI and T2-weighted images of bone metastases after distortion correction were calculated. Distortion correction reduced anatomic error of vertebral DWI up to 29 mm. Error reductions were consistent across subjects (Wilcoxon signed-rank p < 10-20). On average (± SD), participants' largest error reduction was 11.8 mm (± 3.6). Mean (95% CI) displacement of bone lesions was 6.0 mm (95% CI 5.0-7.2); maximum displacement was 17.1 mm. Corrected diffusion images were more similar to structural MRI, as evidenced by consistent increases in mutual information (Wilcoxon signed-rank p < 10-12). These findings support the use of distortion correction techniques to improve localization of bone on DWI.


Asunto(s)
Neoplasias Óseas/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Neoplasias de la Próstata/patología , Imagen de Cuerpo Entero , Artefactos , Neoplasias Óseas/secundario , Humanos , Interpretación de Imagen Asistida por Computador , Masculino , Valor Predictivo de las Pruebas , Estudios Prospectivos , Reproducibilidad de los Resultados
9.
Magn Reson Med ; 87(4): 1938-1951, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34904726

RESUMEN

PURPOSE: Restriction spectrum imaging (RSI) decomposes the diffusion-weighted MRI signal into separate components of known apparent diffusion coefficients (ADCs). The number of diffusion components and optimal ADCs for RSI are organ-specific and determined empirically. The purpose of this work was to determine the RSI model for breast tissues. METHODS: The diffusion-weighted MRI signal was described using a linear combination of multiple exponential components. A set of ADC values was estimated to fit voxels in cancer and control ROIs. Later, the signal contributions of each diffusion component were estimated using these fixed ADC values. Relative-fitting residuals and Bayesian information criterion were assessed. Contrast-to-noise ratio between cancer and fibroglandular tissue in RSI-derived signal contribution maps was compared to DCE imaging. RESULTS: A total of 74 women with breast cancer were scanned at 3.0 Tesla MRI. The fitting residuals of conventional ADC and Bayesian information criterion suggest that a 3-component model improves the characterization of the diffusion signal over a biexponential model. Estimated ADCs of triexponential model were D1,3 = 0, D2,3 = 1.5 × 10-3 , and D3,3 = 10.8 × 10-3 mm2 /s. The RSI-derived signal contributions of the slower diffusion components were larger in tumors than in fibroglandular tissues. Further, the contrast-to-noise and specificity at 80% sensitivity of DCE and a subset of RSI-derived maps were equivalent. CONCLUSION: Breast diffusion-weighted MRI signal was best described using a triexponential model. Tumor conspicuity in breast RSI model is comparable to that of DCE without the use of exogenous contrast. These data may be used as differential features between healthy and malignant breast tissues.


Asunto(s)
Neoplasias de la Mama , Imagen de Difusión por Resonancia Magnética , Teorema de Bayes , Mama/diagnóstico por imagen , Mama/patología , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Medios de Contraste , Imagen de Difusión por Resonancia Magnética/métodos , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Sensibilidad y Especificidad
10.
J Magn Reson Imaging ; 54(3): 975-984, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33786915

RESUMEN

BACKGROUND: Diffusion magnetic resonance imaging (MRI) is integral to detection of prostate cancer (PCa), but conventional apparent diffusion coefficient (ADC) cannot capture the complexity of prostate tissues and tends to yield noisy images that do not distinctly highlight cancer. A four-compartment restriction spectrum imaging (RSI4 ) model was recently found to optimally characterize pelvic diffusion signals, and the model coefficient for the slowest diffusion compartment, RSI4 -C1 , yielded greatest tumor conspicuity. PURPOSE: To evaluate the slowest diffusion compartment of a four-compartment spectrum imaging model (RSI4 -C1 ) as a quantitative voxel-level classifier of PCa. STUDY TYPE: Retrospective. SUBJECTS: Forty-six men who underwent an extended MRI acquisition protocol for suspected PCa. Twenty-three men had benign prostates, and the other 23 men had PCa. FIELD STRENGTH/SEQUENCE: A 3 T, multishell diffusion-weighted and axial T2-weighted sequences. ASSESSMENT: High-confidence cancer voxels were delineated by expert consensus, using imaging data and biopsy results. The entire prostate was considered benign in patients with no detectable cancer. Diffusion images were used to calculate RSI4 -C1 and conventional ADC. Classifier images were also generated. STATISTICAL TESTS: Voxel-level discrimination of PCa from benign prostate tissue was assessed via receiver operating characteristic (ROC) curves generated by bootstrapping with patient-level case resampling. RSI4 -C1 was compared to conventional ADC for two metrics: area under the ROC curve (AUC) and false-positive rate for a sensitivity of 90% (FPR90 ). Statistical significance was assessed using bootstrap difference with two-sided α = 0.05. RESULTS: RSI4 -C1 outperformed conventional ADC, with greater AUC (mean 0.977 [95% CI: 0.951-0.991] vs. 0.922 [0.878-0.948]) and lower FPR90 (0.032 [0.009-0.082] vs. 0.201 [0.132-0.290]). These improvements were statistically significant (P < 0.05). DATA CONCLUSION: RSI4 -C1 yielded a quantitative, voxel-level classifier of PCa that was superior to conventional ADC. RSI classifier images with a low false-positive rate might improve PCa detection and facilitate clinical applications like targeted biopsy and treatment planning. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Neoplasias de la Próstata , Imagen de Difusión por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Curva ROC , Estudios Retrospectivos
11.
J Magn Reson Imaging ; 53(5): 1581-1591, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33644939

RESUMEN

BACKGROUND: Diffusion-weighted (DW) echo-planar imaging (EPI) is prone to geometric distortions due to B0 inhomogeneities. Both prospective and retrospective approaches have been developed to decrease and correct such distortions. PURPOSE: The purpose of this work was to evaluate the performance of reduced-field-of-view (FOV) acquisition and retrospective distortion correction methods in decreasing distortion artifacts for breast imaging. Coverage of the axilla in reduced-FOV DW magnetic resonance imaging (MRI) and residual distortion were also assessed. STUDY TYPE: Retrospective. POPULATION/PHANTOM: Breast phantom and 169 women (52.4 ± 13.4 years old) undergoing clinical breast MRI. FIELD STRENGTH/SEQUENCE: A 3.0 T/ full- and reduced-FOV DW gradient-echo EPI sequence. ASSESSMENT: Performance of reversed polarity gradient (RPG) and FSL topup in correcting breast full- and reduced-FOV EPI data was evaluated using the mutual information (MI) metric between EPI and anatomical images. Two independent breast radiologists determined if coverage on both EPI data sets was adequate to evaluate axillary nodes and identified residual nipple distortion artifacts. STATISTICAL TESTS: Two-way repeated-measures analyses of variance and post hoc tests were used to identify differences between EPI modality and distortion correction method. Generalized linear mixed effects models were used to evaluate differences in axillary coverage and residual nipple distortion. RESULTS: In a breast phantom, residual distortions were 0.16 ± 0.07 cm and 0.22 ± 0.13 cm in reduced- and full-FOV EPI with both methods, respectively. In patients, MI significantly increased after distortion correction of full-FOV (11 ± 5% and 18 ± 9%, RPG and topup) and reduced-FOV (8 ± 4% both) EPI data. Axillary nodes were observed in 99% and 69% of the cases in full- and reduced-FOV EPI images. Residual distortion was observed in 93% and 0% of the cases in full- and reduced-FOV images. DATA CONCLUSION: Minimal distortion was achieved with RPG applied to reduced-FOV EPI data. RPG improved distortions for full-FOV images but with more modest improvements and limited correction near the nipple. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 1.


Asunto(s)
Artefactos , Imagen Eco-Planar , Adulto , Anciano , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Persona de Mediana Edad , Estudios Prospectivos , Estudios Retrospectivos
12.
Clin Cancer Res ; 27(4): 1094-1104, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33148675

RESUMEN

PURPOSE: Diffusion-weighted MRI (DW-MRI) is a contrast-free modality that has demonstrated ability to discriminate between predefined benign and malignant breast lesions. However, how well DW-MRI discriminates cancer from all other breast tissue voxels in a clinical setting is unknown. Here we explore the voxelwise ability to distinguish cancer from healthy breast tissue using signal contributions from the newly developed three-component multi-b-value DW-MRI model. EXPERIMENTAL DESIGN: Patients with pathology-proven breast cancer from two datasets (n = 81 and n = 25) underwent multi-b-value DW-MRI. The three-component signal contributions C 1 and C 2 and their product, C 1 C 2, and signal fractions F 1, F 2, and F 1 F 2 were compared with the image defined on maximum b-value (DWI max), conventional apparent diffusion coefficient (ADC), and apparent diffusion kurtosis (K app). The ability to discriminate between cancer and healthy breast tissue was assessed by the false-positive rate given a sensitivity of 80% (FPR80) and ROC AUC. RESULTS: Mean FPR80 for both datasets was 0.016 [95% confidence interval (CI), 0.008-0.024] for C 1 C 2, 0.136 (95% CI, 0.092-0.180) for C 1, 0.068 (95% CI, 0.049-0.087) for C 2, 0.462 (95% CI, 0.425-0.499) for F 1 F 2, 0.832 (95% CI, 0.797-0.868) for F 1, 0.176 (95% CI, 0.150-0.203) for F 2, 0.159 (95% CI, 0.114-0.204) for DWI max, 0.731 (95% CI, 0.692-0.770) for ADC, and 0.684 (95% CI, 0.660-0.709) for K app. Mean ROC AUC for C 1 C 2 was 0.984 (95% CI, 0.977-0.991). CONCLUSIONS: The C 1 C 2 parameter of the three-component model yields a clinically useful discrimination between cancer and healthy breast tissue, superior to other DW-MRI methods and obliviating predefining lesions. This novel DW-MRI method may serve as noncontrast alternative to standard-of-care dynamic contrast-enhanced MRI.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Mama/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador , Adulto , Anciano , Anciano de 80 o más Años , Mama/patología , Neoplasias de la Mama/patología , Conjuntos de Datos como Asunto , Diagnóstico Diferencial , Estudios de Factibilidad , Femenino , Humanos , Persona de Mediana Edad , Curva ROC , Adulto Joven
13.
J Magn Reson Imaging ; 53(2): 628-639, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33131186

RESUMEN

BACKGROUND: Multicompartmental modeling outperforms conventional diffusion-weighted imaging (DWI) in the assessment of prostate cancer. Optimized multicompartmental models could further improve the detection and characterization of prostate cancer. PURPOSE: To optimize multicompartmental signal models and apply them to study diffusion in normal and cancerous prostate tissue in vivo. STUDY TYPE: Retrospective. SUBJECTS: Forty-six patients who underwent MRI examination for suspected prostate cancer; 23 had prostate cancer and 23 had no detectable cancer. FIELD STRENGTH/SEQUENCE: 3T multishell diffusion-weighted sequence. ASSESSMENT: Multicompartmental models with 2-5 tissue compartments were fit to DWI data from the prostate to determine optimal compartmental apparent diffusion coefficients (ADCs). These ADCs were used to compute signal contributions from the different compartments. The Bayesian Information Criterion (BIC) and model-fitting residuals were calculated to quantify model complexity and goodness-of-fit. Tumor contrast-to-noise ratio (CNR) and tumor-to-background signal intensity ratio (SIR) were computed for conventional DWI and multicompartmental signal-contribution maps. STATISTICAL TESTS: Analysis of variance (ANOVA) and two-sample t-tests (α = 0.05) were used to compare fitting residuals between prostate regions and between multicompartmental models. T-tests (α = 0.05) were also used to assess differences in compartmental signal-fraction between tissue types and CNR/SIR between conventional DWI and multicompartmental models. RESULTS: The lowest BIC was observed from the 4-compartment model, with optimal ADCs of 5.2e-4, 1.9e-3, 3.0e-3, and >3.0e-2 mm2 /sec. Fitting residuals from multicompartmental models were significantly lower than from conventional ADC mapping (P < 0.05). Residuals were lowest in the peripheral zone and highest in tumors. Tumor tissue showed the largest reduction in fitting residual by increasing model order. Tumors had a greater proportion of signal from compartment 1 than normal tissue (P < 0.05). Tumor CNR and SIR were greater on compartment-1 signal maps than conventional DWI (P < 0.05) and increased with model order. DATA CONCLUSION: The 4-compartment signal model best described diffusion in the prostate. Compartmental signal contributions revealed by this model may improve assessment of prostate cancer. Level of Evidence 3 Technical Efficacy Stage 3 J. MAGN. RESON. IMAGING 2021;53:628-639.


Asunto(s)
Neoplasias de la Próstata , Teorema de Bayes , Imagen de Difusión por Resonancia Magnética , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Reproducibilidad de los Resultados , Estudios Retrospectivos
14.
J Alzheimers Dis ; 73(1): 347-357, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31796676

RESUMEN

BACKGROUND: Although amyloid-ß (Aß) and microstructural brain changes are both effective biomarkers of Alzheimer's disease, their independent or synergistic effects on cognitive decline are unclear. OBJECTIVE: To examine associations of Aß and brain microstructure with cognitive decline in amnestic mild cognitive impairment and dementia. METHODS: Restriction spectrum imaging, cerebrospinal fluid Aß, and longitudinal cognitive data were collected on 23 healthy controls and 13 individuals with mild cognitive impairment or mild to moderate Alzheimer's disease. Neurite density (ND) and isotropic free water diffusion (IF) were computed in fiber tracts and cortical regions of interest. We examined associations of Aß with regional and whole-brain microstructure, and assessed whether microstructure mediates effects of Aß on cognitive decline. RESULTS: Lower ND in limbic and association fibers and higher medial temporal lobe IF predicted baseline impairment and longitudinal decline across multiple cognitive domains. ND and IF predicted cognitive outcomes after adjustment for Aß or whole-brain microstructure. Correlations between microstructure and cognition were present for both amyloid-positive and amyloid-negative individuals. Aß correlated with whole-brain, rather than regional, ND and IF. CONCLUSION: Aß correlates with widespread microstructural brain changes, whereas regional microstructure correlates with cognitive decline. Microstructural abnormalities predict cognitive decline regardless of amyloid, and may inform about neural injury leading to cognitive decline beyond that attributable to amyloid.


Asunto(s)
Péptidos beta-Amiloides/líquido cefalorraquídeo , Encéfalo/patología , Disfunción Cognitiva/patología , Disfunción Cognitiva/psicología , Demencia/patología , Demencia/psicología , Placa Amiloide/patología , Anciano , Anciano de 80 o más Años , Imagen de Difusión Tensora , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Vías Nerviosas/patología , Neuritas/patología , Pruebas Neuropsicológicas
15.
Neuroimage ; 202: 116091, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31415884

RESUMEN

The Adolescent Brain Cognitive Development (ABCD) Study is an ongoing, nationwide study of the effects of environmental influences on behavioral and brain development in adolescents. The main objective of the study is to recruit and assess over eleven thousand 9-10-year-olds and follow them over the course of 10 years to characterize normative brain and cognitive development, the many factors that influence brain development, and the effects of those factors on mental health and other outcomes. The study employs state-of-the-art multimodal brain imaging, cognitive and clinical assessments, bioassays, and careful assessment of substance use, environment, psychopathological symptoms, and social functioning. The data is a resource of unprecedented scale and depth for studying typical and atypical development. The aim of this manuscript is to describe the baseline neuroimaging processing and subject-level analysis methods used by ABCD. Processing and analyses include modality-specific corrections for distortions and motion, brain segmentation and cortical surface reconstruction derived from structural magnetic resonance imaging (sMRI), analysis of brain microstructure using diffusion MRI (dMRI), task-related analysis of functional MRI (fMRI), and functional connectivity analysis of resting-state fMRI. This manuscript serves as a methodological reference for users of publicly shared neuroimaging data from the ABCD Study.


Asunto(s)
Desarrollo del Adolescente/fisiología , Mapeo Encefálico/métodos , Encéfalo/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Imagen Multimodal , Adolescente , Encéfalo/anatomía & histología , Imagen de Difusión por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética , Procesamiento de Señales Asistido por Computador
16.
Neuroimage Clin ; 20: 883-891, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30290303

RESUMEN

Improved characterization of the microstructural brain changes occurring in the early stages of Alzheimer's disease may permit more timely disease detection. This study examined how longitudinal change in brain microstructure relates to cognitive decline in aging and prodromal Alzheimer's disease. At baseline and two-year follow-up, 29 healthy controls and 21 individuals with mild cognitive impairment or mild Alzheimer's disease underwent neuropsychological evaluation and restriction spectrum imaging (RSI). Microstructural change in the hippocampus, entorhinal cortex, and white matter tracts previously shown to be vulnerable to Alzheimer's disease, was compared between healthy controls and impaired participants. Partial correlations and stepwise linear regressions examined whether baseline RSI metrics predicted subsequent cognitive decline, or change in RSI metrics correlated with cognitive change. In medial temporal gray and white matter, restricted isotropic diffusion and crossing fibers were lower, and free water diffusion was higher, in impaired participants. Restricted isotropic diffusion in the hippocampus declined more rapidly for cognitively impaired participants. Baseline hippocampal restricted isotropic diffusion predicted cognitive decline, and change in hippocampal and entorhinal restricted isotropic diffusion correlated with cognitive decline. Within controls, changes in white matter restricted oriented diffusion and crossing fibers correlated with memory decline. In contrast, there were no correlations between rates of cortical atrophy and cognitive decline in the full sample or within controls. Changes in medial temporal lobe microarchitecture were associated with cognitive decline in prodromal Alzheimer's disease, and these changes were distinct from microstructural changes in normal cognitive aging. RSI metrics of brain microstructure may hold value for predicting cognitive decline in aging and for monitoring the course of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/patología , Encéfalo/patología , Disfunción Cognitiva/patología , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora , Progresión de la Enfermedad , Femenino , Humanos , Estudios Longitudinales , Masculino , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/patología , Pruebas Neuropsicológicas , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
17.
Transl Psychiatry ; 8(1): 114, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29884845

RESUMEN

Despite great interest in using magnetic resonance imaging (MRI) for studying the effects of genes on brain structure in humans, current approaches have focused almost entirely on predefined regions of interest and had limited success. Here, we used multivariate methods to define a single neuroanatomical score of how William's Syndrome (WS) brains deviate structurally from controls. The score is trained and validated on measures of T1 structural brain imaging in two WS cohorts (training, n = 38; validating, n = 60). We then associated this score with single nucleotide polymorphisms (SNPs) in the WS hemi-deleted region in five cohorts of neurologically and psychiatrically typical individuals (healthy European descendants, n = 1863). Among 110 SNPs within the 7q11.23 WS chromosomal region, we found one associated locus (p = 5e-5) located at GTF2IRD1, which has been implicated in animal models of WS. Furthermore, the genetic signals of neuroanatomical scores are highly enriched locally in the 7q11.23 compared with summary statistics based on regions of interest, such as hippocampal volumes (n = 12,596), and also globally (SNP-heritability = 0.82, se = 0.25, p = 5e-4). The role of genetic variability in GTF2IRD1 during neurodevelopment extends to healthy subjects. Our approach of learning MRI-derived phenotypes from clinical populations with well-established brain abnormalities characterized by known genetic lesions may be a powerful alternative to traditional region of interest-based studies for identifying genetic variants regulating typical brain development.


Asunto(s)
Hipocampo/patología , Proteínas Musculares/genética , Proteínas Nucleares/genética , Transactivadores/genética , Síndrome de Williams/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Niño , Preescolar , Endofenotipos , Europa (Continente) , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Análisis Multivariante , Polimorfismo de Nucleótido Simple , Prueba de Estudio Conceptual , Adulto Joven
18.
Acta Radiol ; 59(12): 1523-1529, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29665707

RESUMEN

BACKGROUND: High b-value diffusion-weighted imaging has application in the detection of cancerous tissue across multiple body sites. Diffusional kurtosis and bi-exponential modeling are two popular model-based techniques, whose performance in relation to each other has yet to be fully explored. PURPOSE: To determine the relationship between excess kurtosis and signal fractions derived from bi-exponential modeling in the detection of suspicious prostate lesions. MATERIAL AND METHODS: This retrospective study analyzed patients with normal prostate tissue (n = 12) or suspicious lesions (n = 13, one lesion per patient), as determined by a radiologist whose clinical care included a high b-value diffusion series. The observed signal intensity was modeled using a bi-exponential decay, from which the signal fraction of the slow-moving component was derived ( SFs). In addition, the excess kurtosis was calculated using the signal fractions and ADCs of the two exponentials ( KCOMP). As a comparison, the kurtosis was also calculated using the cumulant expansion for the diffusion signal ( KCE). RESULTS: Both K and KCE were found to increase with SFs within the range of SFs commonly found within the prostate. Voxel-wise receiver operating characteristic performance of SFs, KCE, and KCOMP in discriminating between suspicious lesions and normal prostate tissue was 0.86 (95% confidence interval [CI] = 0.85 - 0.87), 0.69 (95% CI = 0.68-0.70), and 0.86 (95% CI = 0.86-0.87), respectively. CONCLUSION: In a two-component diffusion environment, KCOMP is a scaled value of SFs and is thus able to discriminate suspicious lesions with equal precision . KCE provides a computationally inexpensive approximation of kurtosis but does not provide the same discriminatory abilities as SFs and KCOMP.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Adulto , Anciano , Anciano de 80 o más Años , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Masculino , Persona de Mediana Edad , Próstata/diagnóstico por imagen , Reproducibilidad de los Resultados , Estudios Retrospectivos
19.
Dev Cogn Neurosci ; 32: 43-54, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29567376

RESUMEN

The ABCD study is recruiting and following the brain development and health of over 10,000 9-10 year olds through adolescence. The imaging component of the study was developed by the ABCD Data Analysis and Informatics Center (DAIC) and the ABCD Imaging Acquisition Workgroup. Imaging methods and assessments were selected, optimized and harmonized across all 21 sites to measure brain structure and function relevant to adolescent development and addiction. This article provides an overview of the imaging procedures of the ABCD study, the basis for their selection and preliminary quality assurance and results that provide evidence for the feasibility and age-appropriateness of procedures and generalizability of findings to the existent literature.


Asunto(s)
Desarrollo del Adolescente/fisiología , Encéfalo/diagnóstico por imagen , Cognición/fisiología , Adolescente , Encéfalo/crecimiento & desarrollo , Femenino , Humanos , Masculino
20.
J Magn Reson Imaging ; 2018 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-29437252

RESUMEN

BACKGROUND: Subject motion is known to produce spurious covariance among time-series in functional connectivity that has been reported to induce distance-dependent spurious correlations. PURPOSE: To present a feasibility study for applying the extended Kalman filter (EKF) framework for high temporal resolution motion correction of resting state functional MRI (rs-fMRI) series using each simultaneous multi-slice (SMS) echo planar imaging (EPI) shot as its own navigator. STUDY TYPE: Prospective feasibility study. POPULATION/SUBJECTS: Three human volunteers. FIELD STRENGTH/SEQUENCE: 3T GE DISCOVERY MR750 scanner using a 32-channel head coil. Simultaneous multi-slice rs-fMRI sequence with repetition time (TR)/echo time (TE) = 800/30 ms, and SMS factor 6. ASSESSMENT: Motion estimates were computed using two techniques: a conventional rigid-body volume-wise registration; and a high-temporal resolution motion estimation rigid-body approach. The reference image was resampled using the estimates obtained from both approaches and the difference between these predicted volumes and the original moving series was summarized using the normalized mean squared error (NMSE). STATISTICAL TESTS: Direct comparison of NMSE values. RESULTS: High-temporal motion estimation was always superior to volume-wise motion estimation for the sample presented. For staged continuous rotations, the NMSE using high-temporal resolution motion estimates ranged between [0.130, 0.150] for the first volunteer (in-plane rotations), between [0.060, 0.068] for the second volunteer (in-plane rotations), and between [0.063, 0.080] for the third volunteer (through-plane rotations). These values went up to [0.384, 0.464]; [0.136, 0.179]; and [0.080, 0.096], respectively, when using volume-wise motion estimates. DATA CONCLUSION: Accurate high-temporal rigid-body motion estimates can be obtained for rs-fMRI taking advantage of simultaneous multi-slice EPI sub-TR shots. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA