Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(27): e2100036119, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35771940

RESUMEN

Native Americans domesticated maize (Zea mays ssp. mays) from lowland teosinte parviglumis (Zea mays ssp. parviglumis) in the warm Mexican southwest and brought it to the highlands of Mexico and South America where it was exposed to lower temperatures that imposed strong selection on flowering time. Phospholipids are important metabolites in plant responses to low-temperature and phosphorus availability and have been suggested to influence flowering time. Here, we combined linkage mapping with genome scans to identify High PhosphatidylCholine 1 (HPC1), a gene that encodes a phospholipase A1 enzyme, as a major driver of phospholipid variation in highland maize. Common garden experiments demonstrated strong genotype-by-environment interactions associated with variation at HPC1, with the highland HPC1 allele leading to higher fitness in highlands, possibly by hastening flowering. The highland maize HPC1 variant resulted in impaired function of the encoded protein due to a polymorphism in a highly conserved sequence. A meta-analysis across HPC1 orthologs indicated a strong association between the identity of the amino acid at this position and optimal growth in prokaryotes. Mutagenesis of HPC1 via genome editing validated its role in regulating phospholipid metabolism. Finally, we showed that the highland HPC1 allele entered cultivated maize by introgression from the wild highland teosinte Zea mays ssp. mexicana and has been maintained in maize breeding lines from the Northern United States, Canada, and Europe. Thus, HPC1 introgressed from teosinte mexicana underlies a large metabolic QTL that modulates phosphatidylcholine levels and has an adaptive effect at least in part via induction of early flowering time.


Asunto(s)
Adaptación Fisiológica , Flores , Interacción Gen-Ambiente , Fosfatidilcolinas , Fosfolipasas A1 , Proteínas de Plantas , Zea mays , Alelos , Mapeo Cromosómico , Flores/genética , Flores/metabolismo , Genes de Plantas , Ligamiento Genético , Fosfatidilcolinas/metabolismo , Fosfolipasas A1/clasificación , Fosfolipasas A1/genética , Fosfolipasas A1/metabolismo , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/genética , Zea mays/crecimiento & desarrollo
2.
Curr Opin Plant Biol ; 64: 102124, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34715472

RESUMEN

People living in the Balsas River basin in southwest México domesticated maize from the bushy grass teosinte. Nine thousand years later, in 2021, Ms. Deb Haaland - a member of the Pueblo of Laguna tribe of New Mexico - wore a dress adorned with a cornstalk when she was sworn in as the Secretary of Interior of the United States of America. This choice of garment highlights the importance of the coevolution of maize and the farmers who, through careful selection over thousands of years, domesticated maize and adapted the physiology and shoot architecture of maize to fit local environments and growth habits. Some traits such as tillering were directly selected on (arches), and others such as tassel size are the by-products (spandrels) of maize evolution. Here, we review current knowledge of the underlying cellular, developmental, physiological, and metabolic processes that were selected by farmers and breeders, which have positioned maize as a top global staple crop.


Asunto(s)
Domesticación , Zea mays , Aclimatación , Adaptación Fisiológica , Femenino , Humanos , Poaceae , Selección Genética , Zea mays/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...