Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 24(1): 12, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627554

RESUMEN

BACKGROUND: COVID-19 caused by the SARS-CoV-2 infection may result in various disease symptoms and severity, ranging from asymptomatic, through mildly symptomatic, up to very severe and even fatal cases. Although environmental, clinical, and social factors play important roles in both susceptibility to the SARS-CoV-2 infection and progress of COVID-19 disease, it is becoming evident that both pathogen and host genetic factors are important too. In this study, we report findings from whole-exome sequencing (WES) of 27 individuals who died due to COVID-19, especially focusing on frequencies of DNA variants in genes previously associated with the SARS-CoV-2 infection and the severity of COVID-19. RESULTS: We selected the risk DNA variants/alleles or target genes using four different approaches: 1) aggregated GWAS results from the GWAS Catalog; 2) selected publications from PubMed; 3) the aggregated results of the Host Genetics Initiative database; and 4) a commercial DNA variant annotation/interpretation tool providing its own knowledgebase. We divided these variants/genes into those reported to influence the susceptibility to the SARS-CoV-2 infection and those influencing the severity of COVID-19. Based on the above, we compared the frequencies of alleles found in the fatal COVID-19 cases to the frequencies identified in two population control datasets (non-Finnish European population from the gnomAD database and genomic frequencies specific for the Slovak population from our own database). When compared to both control population datasets, our analyses indicated a trend of higher frequencies of severe COVID-19 associated risk alleles among fatal COVID-19 cases. This trend reached statistical significance specifically when using the HGI-derived variant list. We also analysed other approaches to WES data evaluation, demonstrating its utility as well as limitations. CONCLUSIONS: Although our results proved the likely involvement of host genetic factors pointed out by previous studies looking into severity of COVID-19 disease, careful considerations of the molecular-testing strategies and the evaluated genomic positions may have a strong impact on the utility of genomic testing.


Asunto(s)
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2 , Secuenciación del Exoma , Alelos , ADN
2.
Biomed Pharmacother ; 147: 112662, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35091237

RESUMEN

Acquired drug resistance and metastasis in breast cancer (BC) are coupled with epigenetic deregulation of gene expression. Epigenetic drugs, aiming to reverse these aberrant transcriptional patterns and sensitize cancer cells to other therapies, provide a new treatment strategy for drug-resistant tumors. Here we investigated the ability of DNA methyltransferase (DNMT) inhibitor decitabine (DAC) to increase the sensitivity of BC cells to anthracycline antibiotic doxorubicin (DOX). Three cell lines representing different molecular BC subtypes, JIMT-1, MDA-MB-231 and T-47D, were used to evaluate the synergy of sequential DAC + DOX treatment in vitro. The cytotoxicity, genotoxicity, apoptosis, and migration capacity were tested in 2D and 3D cultures. Moreover, genome-wide DNA methylation and transcriptomic analyses were employed to understand the differences underlying DAC responsiveness. The ability of DAC to sensitize trastuzumab-resistant HER2-positive JIMT-1 cells to DOX was examined in vivo in an orthotopic xenograft mouse model. DAC and DOX synergistic effect was identified in all tested cell lines, with JIMT-1 cells being most sensitive to DAC. Based on the whole-genome data, we assume that the aggressive behavior of JIMT-1 cells can be related to the enrichment of epithelial-to-mesenchymal transition and stemness-associated pathways in this cell line. The four-week DAC + DOX sequential administration significantly reduced the tumor growth, DNMT1 expression, and global DNA methylation in xenograft tissues. The efficacy of combination therapy was comparable to effect of pegylated liposomal DOX, used exclusively for the treatment of metastatic BC. This work demonstrates the potential of epigenetic drugs to modulate cancer cells' sensitivity to other forms of anticancer therapy.


Asunto(s)
Neoplasias de la Mama/patología , ADN (Citosina-5-)-Metiltransferasa 1/antagonistas & inhibidores , Decitabina/farmacología , Doxorrubicina/farmacología , Resistencia a Antineoplásicos , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Doxorrubicina/análogos & derivados , Transición Epitelial-Mesenquimal , Femenino , Genes erbB-2/genética , Humanos , Concentración 50 Inhibidora , Ratones , Ratones SCID , Pruebas de Mutagenicidad , Polietilenglicoles/farmacología , Distribución Aleatoria , Trastuzumab/farmacología , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Healthcare (Basel) ; 9(11)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34828590

RESUMEN

Three-dimensional convolutional neural networks (3D CNN) of artificial intelligence (AI) are potent in image processing and recognition using deep learning to perform generative and descriptive tasks. Compared to its predecessor, the advantage of CNN is that it automatically detects the important features without any human supervision. 3D CNN is used to extract features in three dimensions where input is a 3D volume or a sequence of 2D pictures, e.g., slices in a cone-beam computer tomography scan (CBCT). The main aim was to bridge interdisciplinary cooperation between forensic medical experts and deep learning engineers, emphasizing activating clinical forensic experts in the field with possibly basic knowledge of advanced artificial intelligence techniques with interest in its implementation in their efforts to advance forensic research further. This paper introduces a novel workflow of 3D CNN analysis of full-head CBCT scans. Authors explore the current and design customized 3D CNN application methods for particular forensic research in five perspectives: (1) sex determination, (2) biological age estimation, (3) 3D cephalometric landmark annotation, (4) growth vectors prediction, (5) facial soft-tissue estimation from the skull and vice versa. In conclusion, 3D CNN application can be a watershed moment in forensic medicine, leading to unprecedented improvement of forensic analysis workflows based on 3D neural networks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...