Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 269(Pt 2): 132219, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38729475

RESUMEN

The use of plant gum-based biodegradable bioplastic films as a packaging material is limited due to their poor physicochemical properties. However, combining plant gum with synthetic degradable polymer and some additives can improve these properties. Keeping in view, the present study aimed to synthesize a series of bioplastic films using Moringa oleifera gum, polyvinyl alcohol, glycerol, and citric acid via thermal treatment followed by a solution casting method. The films were characterized using analytical techniques such as FTIR, XRD, SEM, AFM, TGA, and DSC. The study examined properties such as water sensitivity, gas barrier attributes, tensile strength, the shelf life of food, and biodegradability. The films containing higher citric acid amounts showed appreciable %elongation without compromising tensile strength, good oxygen barrier properties, and biodegradation rates (>95%). Varying the amounts of glycerol and citric acid in the films broadened their physicochemical properties ranging from hydrophilicity to hydrophobicity and rigidity to flexibility. As all the films were synthesized using economical and environmentally safe materials, and showed better physicochemical and barrier properties, this study suggests that these bioplastic films can prove to be a potential alternative for various packaging applications.

2.
Pharmaceutics ; 14(11)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36432680

RESUMEN

The sustained release of multiple anti-cancer drugs using a single delivery carrier to achieve a synergistic antitumor effect remains challenging in biomaterials and pharmaceutics science. In this study, a supramolecular hydrogel based on the host-guest complexes between pH-responsive micelle derived poly(ethylene glycol) chains and α-cyclodextrin was designed for codelivery of two kinds of anti-cancer agents, hydrophilic 8-hydroxyquinoline glycoconjugate and hydrophobic doxorubicin. The host-guest interactions were characterized using X-ray diffraction and differential scanning calorimetry techniques. The resultant supramolecular hydrogel showed thixotropic properties, which are advantageous to drug delivery systems. In vitro release studies revealed that the supramolecular hydrogel exhibited faster drug release profiles in acidic conditions. The MTT assay demonstrated a synergistic cancer cell proliferation inhibition of DOX/8HQ-Glu mixture. In vitro cytotoxicity studies indicated excellent biocompatibility of the supramolecular hydrogel matrix, whereas the DOX/8HQ-Glu-loaded supramolecular hydrogel showed a sustained inhibition efficacy against cancer cells. The codelivery of hydrophobic anti-cancer drugs and hydrophilic anti-cancer drug glycoconjugates via a pH-responsive supramolecular hydrogel opens up new possibilities for the development of an effective cancer treatment based on the tumor-specific Warburg effect.

3.
Molecules ; 27(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36296513

RESUMEN

Based on the Warburg effect and the increased demand for glucose by tumor cells, a targeted drug delivery strategy was developed. A series of new glycoconjugates with increased ability to interact with GLUT transporters, responsible for the transport of sugars to cancer cells, were synthesized. Glycoconjugation was performed using the C-6 position in the sugar unit, as the least involved in the formation of hydrogen bonds with various aminoacids residues of the transporter. The carbohydrate moiety was connected with the 8-hydroxyquinoline scaffold via a 1,2,3-triazole linker. For the obtained compounds, several in vitro biological tests were performed using HCT-116 and MCF-7 cancer cells as well as NHDF-Neo healthy cells. The highest cytotoxicity of both cancer cell lines in the MTT test was noted for glycoconjugates in which the triazole-quinoline was attached through the triazole nitrogen atom to the d-glucose unit directly to the carbon at the C-6 position. These compounds were more selective than the analogous glycoconjugates formed by the C-1 anomeric position of d-glucose. Experiments with an EDG inhibitor have shown that GLUTs can be involved in the transport of glycoconjugates. The results of apoptosis and cell cycle analyses by flow cytometry confirmed that the new type of glycoconjugates shows pro-apoptotic properties, without significantly affecting changes in the distribution of the cell cycle. Moreover, glycoconjugates were able to decrease the clonogenic potential of cancer cells, inhibit the migration capacity of cells and intercalate with DNA.


Asunto(s)
Antineoplásicos , Quinolinas , Humanos , Antineoplásicos/química , Azúcares , Glicoconjugados/química , Oxiquinolina/química , Quinolinas/farmacología , Quinolinas/química , Carbohidratos , Triazoles/farmacología , Glucosa , Carbono , Nitrógeno , Ensayos de Selección de Medicamentos Antitumorales , Relación Estructura-Actividad
4.
Pharmaceutics ; 14(2)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35214023

RESUMEN

The development of selective delivery of anticancer drugs into tumor tissues to avoid systemic toxicity is a crucial challenge in cancer therapy. In this context, we evaluated the efficacy of a combination of nanocarrier pH-sensitivity and glycoconjugation of encapsulated drugs, since both vectors take advantage of the tumor-specific Warburg effect. Herein, we synthesized biodegradable diblock copolymer, a poly(ethylene glycol)-hydrazone linkage-poly[R,S]-3-hydroxybutyrate, which could further self-assemble into micelles with a diameter of ~55 nm. The hydrazone bond was incorporated between two copolymer blocks under an acidic pH, causing the shell-shedding of micelles which results in the drug's release. The micelles were stable at pH 7.4, but decompose in acidic pH, as stated by DLS studies. The copolymer was used as a nanocarrier for 8-hydroxyquinoline glucose and galactose conjugates as well as doxorubicin, and exhibited pH-dependent drug release behavior. In vitro cytotoxicity, apoptosis, and life cycle assays studies of blank and drug-loaded micelles were performed on Normal Human Dermal Fibroblasts-Neonatal (NHDF-Neo), colon carcinoma (HCT-116), and breast cancer (MCF-7) for 24, 48, and 72 h. A lack of toxicity of blank micelles was demonstrated, whereas the glycoconjugates-loaded micelles revealed enhanced selectivity to inhibit the proliferation of cancer cells. The strategy of combining pH-responsive nanocarriers with glycoconjugation of the drug molecule provides an alternative to the modus operandi of designing multi-stimuli nanocarriers to increase the selectivity of anticancer therapy.

5.
Molecules ; 27(3)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35164304

RESUMEN

The design of prodrugs is one of the important strategies for selective anti-cancer therapies. When designing prodrugs, attention is paid to the possibility of their targeting tumor-specific markers such as proteins responsible for glucose uptake. That is why glycoconjugation of biologically active compounds is a frequently used strategy. Glycoconjugates consisting of three basic building blocks: a sugar unit, a linker containing a 1,2,3-triazole ring, and an 8-hydroxyquinoline fragment was described earlier. It is not known whether their cytotoxicity is due to whole glycoconjugates action or their metabolites. To check the biological activity of products that can be released from glycoconjugates under the action of hydrolytic enzymes, the synthetically obtained potential metabolites were tested in vitro for the inhibition of proliferation of HCT-116, MCF-7, and NHDF-Neo cell lines using the MTT assay. Research shows that for the full activity of glycoconjugates, the presence of all three building blocks in the structure of a potential drug is necessary. For selected derivatives, additional tests of targeted drug delivery to tumor cells were carried out using polymer nanocarriers in which they are encapsulated. This approach significantly lowered the determined IC50 values of the tested compounds and improved their selectivity and effectiveness.


Asunto(s)
Antineoplásicos/farmacología , Glicoconjugados/farmacología , Profármacos/farmacología , Quinolinas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Glicoconjugados/síntesis química , Glicoconjugados/química , Glicoconjugados/metabolismo , Humanos , Células MCF-7 , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Profármacos/síntesis química , Profármacos/química , Profármacos/metabolismo , Quinolinas/síntesis química , Quinolinas/química , Quinolinas/metabolismo , Relación Estructura-Actividad
6.
Polymers (Basel) ; 13(24)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34960919

RESUMEN

The feasibility of synthesis of functionalized poly(3-hydroxybutanoic acid) analogue and its copolymers via ring-opening polymerization of ß-butyrolactone mediated by activated anionic initiators is presented. Using these new synthetic approaches, polyesters with a defined chemical structure of the end groups, as well as block, graft, and random copolymers, have been obtained and characterized by modern instrumental techniques, with special emphasis on ESI-MS. The relationship between the structure and properties of the prepared polymeric materials is also discussed.

7.
Polymers (Basel) ; 12(12)2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33276597

RESUMEN

Nanoparticles based on amphiphilic copolymers with tunable physicochemical properties can be used to encapsulate delicate pharmaceutics while at the same time improving their solubility, stability, pharmacokinetic properties, reducing immune surveillance, or achieving tumor-targeting ability. Those nanocarriers based on biodegradable aliphatic polycarbonates are a particularly promising platform for drug delivery due to flexibility in the design and synthesis of appropriate monomers and copolymers. Current studies in this field focus on the design and the synthesis of new effective carriers of hydrophobic drugs and their release in a controlled manner by exogenous or endogenous factors in tumor-specific regions. Reactive groups present in aliphatic carbonate copolymers, undergo a reaction under the action of a stimulus: e.g., acidic hydrolysis, oxidation, reduction, etc. leading to changes in the morphology of nanoparticles. This allows the release of the drug in a highly controlled manner and induces a desired therapeutic outcome without damaging healthy tissues. The presented review summarizes the current advances in chemistry and methods for designing stimuli-responsive nanocarriers based on aliphatic polycarbonates for controlled drug delivery.

8.
Eur J Pharm Biopharm ; 154: 317-329, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32717390

RESUMEN

Biodegradable triblock copolymer poly(ethylene glycol)-b-polycarbonate-b-oligo([R]-3-hydroxybutyrate) was prepared via metal-free ring-opening polymerization of ketal protected six-membered cyclic carbonate followed by esterification with bacterial oligo([R]-3-hydroxybutyrate) (oPHB). Amphiphilic triblock copolymer self-organizes into micelles with a diameter of ~25 nm. Acid-triggered hydrolysis of ketal groups to two hydroxyl groups causes an increase in hydrophilicity of the hydrophobic micelle core, resulting in the micelles swell and drug release. oPHB was added as core-forming block to increase the stability of prepared micelles in all pH (7.4, 6.4, 5.5) studied. Doxorubicin and 8-hydroxyquinoline glucose- and galactose conjugates were loaded in the micelles. In vitro drug release profiles in PBS buffers with different pH showed that a small amount of loaded drug was released in PBS at pH 7.4, while the drug was released much faster at pH 5.5. MTT assay showed that the blank micelles were non-toxic to different cell lines, while glycoconjugates-loaded micelles, showed significantly increased ability to inhibit the proliferation of MCF-7 and HCT-116 cells compared to free glycoconjugates. The glycoconjugation of anti-cancer drugs and pH-responsive nanocarriers have separately shown great potential to increase the tumor-targeted drug delivery efficiency. The combination of drug glycoconjugation and the use of pH-responsive nanocarrier opens up new possibilities to develop novel strategies for efficient tumor therapy.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Glicoconjugados/metabolismo , Micelas , Oxiquinolina/metabolismo , Efecto Warburg en Oncología/efectos de los fármacos , Implantes Absorbibles , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/metabolismo , Glicoconjugados/administración & dosificación , Células HCT116 , Humanos , Concentración de Iones de Hidrógeno , Oxiquinolina/administración & dosificación
9.
Materials (Basel) ; 13(9)2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32403315

RESUMEN

The need for a cost reduction of the materials derived from (bio)degradable polymers forces research development into the formation of biocomposites with cheaper fillers. As additives can be made using the post-consumer wood, generated during wood products processing, re-use of recycled waste materials in the production of biocomposites can be an environmentally friendly way to minimalize and/or utilize the amount of the solid waste. Also, bioactive materials, which possess small amounts of antimicrobial additives belong to a very attractive packaging industry solution. This paper presents a study into the biodegradation, under laboratory composting conditions, of the composites that consist of poly[(R)-3-hydroxybutyrate-co-4-hydroxybutyrate)] and wood flour as a polymer matrix and natural filler, respectively. Thermogravimetric analysis, differential scanning calorimetry and scanning electron microscopy were used to evaluate the degradation progress of the obtained composites with different amounts of wood flour. The degradation products were characterized by multistage electrospray ionization mass spectrometry. Also, preliminary tests of the antimicrobial activity of selected materials with the addition of nisin were performed. The obtained results suggest that the different amount of filler has a significant influence on the degradation profile.

10.
Molecules ; 24(22)2019 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-31752188

RESUMEN

Small molecule nitrogen heterocycles are very important structures, widely used in the design of potential pharmaceuticals. Particularly, derivatives of 8-hydroxyquinoline (8-HQ) are successfully used to design promising anti-cancer agents. Conjugating 8-HQ derivatives with sugar derivatives, molecules with better bioavailability, selectivity, and solubility are obtained. In this study, 8-HQ derivatives were functionalized at the 8-OH position and connected with sugar derivatives (D-glucose or D-galactose) substituted with different groups at the anomeric position, using copper(I)-catalyzed 1,3-dipolar azide-alkyne cycloaddition (CuAAC). Glycoconjugates were tested for inhibition of the proliferation of cancer cell lines (HCT 116 and MCF-7) and inhibition of ß-1,4-galactosyltransferase activity, which overexpression is associated with cancer progression. All glycoconjugates in protected form have a cytotoxic effect on cancer cells in the tested concentration range. The presence of additional amide groups in the linker structure improves the activity of glycoconjugates, probably due to the ability to chelate metal ions present in many types of cancers. The study of metal complexing properties confirmed that the obtained glycoconjugates are capable of chelating copper ions, which increases their anti-cancer potential.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Glicoconjugados/farmacología , Oxiquinolina/análogos & derivados , Oxiquinolina/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Galactosiltransferasas/antagonistas & inhibidores , Glicoconjugados/química , Células HCT116 , Humanos , Células MCF-7 , Metales/química , Metales/farmacología , Modelos Moleculares , Oxiquinolina/química , Relación Estructura-Actividad
11.
Polymers (Basel) ; 11(7)2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31336650

RESUMEN

It was shown that selected sodium phenoxide derivatives with different basicity and nucleophilicity, such as sodium p-nitrophenoxide, p-chlorophenoxide, 1-napthoxide, phenoxide and p-methoxyphenoxide, are effective initiators in anionic ring-opening polymerization (AROP) of ß-butyrolactone in mild conditions. It was found that phenoxides as initiators in anionic ring-opening polymerization of ß-butyrolactone behave as strong nucleophiles, or weak nucleophiles, as well as Brønsted bases. The resulting polyesters possessing hydroxy, phenoxy and crotonate initial groups are formed respectively by the attack of phenoxide anion at (i) C2 followed by an elimination reaction with hydroxide formation, (ii) C4 and (iii) abstraction of acidic proton at C3. The obtained poly(3-hydroxybutyrate) possesses carboxylate growing species. The ratio of the observed initial groups strongly depends on the basicity and nucleophilicity of the sodium phenoxide derivative used as initiator. The proposed mechanism of this polymerization describes the reactions leading to formation of observed end groups. Moreover, the possibility of formation of a crotonate group during the propagation step of this polymerization is also discussed.

12.
Polymers (Basel) ; 11(3)2019 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-30960531

RESUMEN

The degree of degradation of pure poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] and its composites with cork incubated under industrial and laboratory composting conditions was investigated. The materials were parallelly incubated in distilled water at 70 °C as a reference experiment (abiotic condition). It was demonstrated that addition of the cork into polyester strongly affects the matrix crystallinity. It influences the composite degradation independently on the degradation environment. Moreover, the addition of the cork increases the thermal stability of the obtained composites; this was related to a smaller reduction in molar mass during processing. This phenomenon also had an influence on the composite degradation process. The obtained results suggest that the addition of cork as a natural filler in various mass ratios to the composites enables products with different life expectancies to be obtained.

13.
Materials (Basel) ; 13(1)2019 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-31905603

RESUMEN

Supramolecular hydrogels that are based on inclusion complexes between α-cyclodextrin and (co)polymers have gained significant attention over the last decade. They are formed via dynamic noncovalent bonds, such as host-guest interactions and hydrogen bonds, between various building blocks. In contrast to typical chemical crosslinking (covalent linkages), supramolecular crosslinking is a type of physical interaction that is characterized by great flexibility and it can be used with ease to create a variety of "smart" hydrogels. Supramolecular hydrogels based on the self-assembly of polypseudorotaxanes formed by a polymer chain "guest" and α-cyclodextrin "host" are promising materials for a wide range of applications. α-cyclodextrin-based polypseudorotaxane hydrogels are an attractive platform for engineering novel functional materials due to their excellent biocompatibility, thixotropic nature, and reversible and stimuli-responsiveness properties. The aim of this review is to provide an overview of the current progress in the chemistry and methods of designing and creating α-cyclodextrin-based supramolecular polypseudorotaxane hydrogels. In the described systems, the guests are (co)polymer chains with various architectures or polymeric nanoparticles. The potential applications of such supramolecular hydrogels are also described.

14.
J Mech Behav Biomed Mater ; 66: 144-151, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27871052

RESUMEN

Materials with shape memory effect (SME) have already been widely used in the medical field. The interesting part of this group is represented by double function materials. The bioresorption and SME ability are common in polyesters implants. The first information about vascular stent made of bioresorbable polyester with SME was published in 2000. However, there are not many investigations about SME control of elements in the aspect of material processing. In the present work, the ability to control the shape memory (SM) of bioresorbable and semicrystalline poly(L-lactide) (PLLA) is investigated. The studies are based on the unexpected effect of material orientation which was demonstrated even at low percentage deformation in crystallized mould injected material. The presented studies revealed that the different degrees of crystallinity obtained during processing might be a useful switch to create a tailored SME for a specific application. The prepared samples of variable morphology revealed a possibility to control the value of material stress during permanent shape recovery. The degree of shape recovery of the prepared samples was also controlable. The highest stress value observed during permanent shape recovery reached 10MPa for the sample annealed 60min at 115°C even when the sample was only deformed in 8%. The other significant aspect of this work is to present the problem of slow crystallization of the material during and after processing (cooling rate) as well as the possibility of negative SME change during the shelf life of the fabric.


Asunto(s)
Materiales Biocompatibles/química , Poliésteres/química , Stents , Cristalización , Ensayo de Materiales , Polímeros
15.
Biomed Mater ; 9(6): 065005, 2014 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-25358374

RESUMEN

3D fine porous structures obtained by electrospinning a poly[(R,S)-3-hydroxybutyrate] (aPHB)/ poly[(R)-3-hydroxybutyrate] (PHB) (85/15 w/w) blend were successfully modified with human procollagen type I by simple immersion of the polyester scaffold in an aqueous solution of the protein. Effective modification of the scaffold with human procollagen I was confirmed by an immunodetection test, which revealed the presence of the procollagen type I as an outer layer even on inner structures of the porous matrixes. Biological tests of 3D fabrics made of the PHB blend provide support for the adhesion and proliferation of human fibroblasts, while their modification with procollagen type I increased the biocompatibility of the final scaffolds significantly, as shown by the notable increase in the number of attached cells during the early hours of their incubation. Based on these findings, human procollagen type I surface-modified aPHB/PHB scaffolds should be considered a promising material in regenerative medicine.


Asunto(s)
Materiales Biocompatibles/química , Colágeno Tipo I/química , Hidroxibutiratos/química , Andamios del Tejido/química , Adhesión Celular , Proliferación Celular , Células Cultivadas , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Microscopía Electrónica de Rastreo , Péptidos/química , Poliésteres/química , Porosidad , Prohibitinas , Regeneración , Sales (Química)/química , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Ingeniería de Tejidos/métodos , Viscosidad
16.
PLoS One ; 8(9): e75812, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24086638

RESUMEN

Poly(3-hydroxybutyrate) (PHB) is a polyester of 3-hydroxybutyric acid (HB) that is ubiquitously present in all organisms. In higher eukaryotes PHB is found in the length of 10 to 100 HB units and can be present in free form as well as in association with proteins and inorganic polyphosphate. It has been proposed that PHB can mediate ion transport across lipid bilayer membranes. We investigated the ability of PHB to interact with living cells and isolated mitochondria and the effects of these interactions on membrane ion transport. We performed experiments using a fluorescein derivative of PHB (fluo-PHB). We found that fluo-PHB preferentially accumulated inside the mitochondria of HeLa cells. Accumulation of fluo-PHB induced mitochondrial membrane depolarization. This membrane depolarization was significantly delayed by the inhibitor of the mitochondrial permeability transition pore - Cyclosporin A. Further experiments using intact cells as well as isolated mitochondria confirmed that the effects of PHB directly linked to its ability to facilitate ion transport, including calcium, across the membranes. We conclude that PHB demonstrates ionophoretic properties in biological membranes and this effect is most profound in mitochondria due to the selective accumulation of the polymer in this organelle.


Asunto(s)
Hidroxibutiratos/farmacología , Mitocondrias/efectos de los fármacos , Membranas Mitocondriales/efectos de los fármacos , Permeabilidad/efectos de los fármacos , Poliésteres/farmacología , Calcio/metabolismo , Línea Celular Tumoral , Ciclosporina/metabolismo , Células HeLa , Humanos , Transporte Iónico/efectos de los fármacos , Transporte Iónico/fisiología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias/metabolismo , Mitocondrias/fisiología , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/fisiología , Poro de Transición de la Permeabilidad Mitocondrial , Prohibitinas
17.
Biomacromolecules ; 11(4): 839-47, 2010 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-20187658

RESUMEN

Degradation of poly[(1,4-butylene terephthalate)-co-(1,4-butylene adipate)] (Ecoflex, BTA) monofilaments (rods) in standardized sandy soil was investigated. Changes in the microstructure and chemical composition distribution of the degraded BTA samples were evaluated and changes in the pH and salinity of postdegradation soil, as well as the soil phytotoxicity impact of the degradation products, are reported. A macroscopic and microscopic evaluation of the surface of BTA rod samples after specified periods of incubation in standardized soil indicated erosion of the surface of BTA rods starting from the fourth month of their incubation, with almost total disintegration of the incubated BTA material observed after 22 months. However, the weight loss after this period of time was about 50% and only a minor change in the M(w) of the investigated BTA samples was observed, along with a slight increase in the dispersity (from an initial 2.75 up to 4.00 after 22 months of sample incubation). The multidetector SEC and ESI-MS analysis indicated retention of aromatic chain fragments in the low molar mass fraction of the incubated sample. Phytotoxicity studies revealed no visible damage, such as necrosis and chlorosis, or other inhibitory effects, in the following plants: radish, cres, and monocotyledonous oat, indicating that the degradation products of the investigated BTA copolyester are harmless to the tested plants.


Asunto(s)
Ecotoxicología , Plantas/efectos de los fármacos , Poliésteres/toxicidad , Dióxido de Silicio/análisis , Contaminantes del Suelo/toxicidad , Suelo/análisis , Biodegradación Ambiental , Espectroscopía de Resonancia Magnética , Dióxido de Silicio/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Pruebas de Toxicidad
18.
Eur J Med Chem ; 45(5): 1833-42, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20171760

RESUMEN

Synthesis of novel conjugates of the non-steroidal anti-inflammatory drug - ibuprofen with nontoxic oligo(3-hydroxybutyrate) (OHB) is described. Presented results indicate that anionic ring-opening polymerization of (R,S)-beta-butyrolactone initiated with an alkali metal salt of (S)-(+)-2-(4-isobutylphenyl)propionic acid (ibuprofen) may constitute a convenient method of conjugation of selected drugs with biodegradable OHB. Furthermore using the MTT cell proliferation assay we demonstrated that ibuprofen conjugated with OHB exhibited significantly increased, as compared to free ibuprofen, potential to inhibit proliferation of HT-29 and HCT 116 colon cancer cells. However, the conjugates of ibuprofen and OHB are less toxic as was shown in oral acute toxicity test in rats. Although the mechanism of antiproliferative activity of ibuprofen-OHB conjugates (Ibu-OHB) has to be established, we suggest that partially it can be related to more effective cellular uptake of the conjugate than the free drug. This assumption is based on the observation of much more efficient accumulation of a marker compound - OHB conjugated with fluorescein, in contrast to fluorescein sodium salt, which entered cells inefficiently. Further characterization of biological properties of the ibuprofen-OHB conjugates would provide insight into the mechanism of their antiproliferative effect and assess the potential relevance of their anticancer activity.


Asunto(s)
Ácido 3-Hidroxibutírico/farmacología , Antiinflamatorios no Esteroideos/farmacología , Antineoplásicos/farmacología , Ibuprofeno/farmacología , Ácido 3-Hidroxibutírico/síntesis química , Ácido 3-Hidroxibutírico/química , Animales , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Femenino , Humanos , Ibuprofeno/síntesis química , Ibuprofeno/química , Estructura Molecular , Ratas , Ratas Wistar , Estereoisomerismo , Relación Estructura-Actividad
19.
Biomacromolecules ; 8(4): 1053-8, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17330956

RESUMEN

This communication shows that thermal degradation of poly(3-hydroxybutyrate)s (PHBs) is induced by carboxylate groups via a newly proposed E1cB mechanism. In PHBs with end groups in the form of carboxylic acid salts with Na+, K+, and Bu4N+ counterions, the proposed mechanism explains the dependence of thermal stability on the size of the counterion. The degradation via intermolecular alpha-deprotonation by carboxylate is suggested to be the main PHB decomposition pathway at moderate temperatures. The results of the present study show the ability to control the degradation and stability of poly(3-hydroxybutyrate)s as well as of their blends via chemical structure and concentration of the carboxylate polymer end groups.


Asunto(s)
Ácidos Carboxílicos/química , Hidroxibutiratos/síntesis química , Poliésteres/síntesis química , Catálisis , Hidroxibutiratos/química , Espectroscopía de Resonancia Magnética/métodos , Estructura Molecular , Poliésteres/química , Sensibilidad y Especificidad , Temperatura , Termogravimetría
20.
Biomacromolecules ; 7(11): 3125-31, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17096541

RESUMEN

The degradation of poly[(R,S)-3-hydroxybutyrate], a-PHB, binary blends with natural PHB (n-PHB) and poly(L-lactic acid), PLLA, respectively, has been investigated in soil. In such a natural environment, a-PHB blend component was found to biodegrade. The degradation of a-PHB-containing blends proceeded faster than that of respective plain n-PHB and PLLA. The molecular weight decrease of the n-PHB component was higher, while the same rate of bioerosion of both components was observed for the a-PHB/n-PHB binary blend. For the a-PHB blend with PLLA, the weight loss was accompanied by blend composition changes and the decrease of a-PHB content. However, the PLLA molecular weight decrease was lower in the blend in comparison with the plain PLLA sample. The increase of the number of microorganisms particularly observed for the soil where binary blends were incubated indicates that microbial degradation of a-PHB takes place. The terrestrial plant growth test (cress and barley) demonstrates no environmental toxicity of the materials studied.


Asunto(s)
Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Contaminantes del Suelo/metabolismo , Hordeum/crecimiento & desarrollo , Hidroxibutiratos/toxicidad , Lepidium/crecimiento & desarrollo , Peso Molecular , Poliésteres/toxicidad , Microbiología del Suelo , Contaminantes del Suelo/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...