Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38014160

RESUMEN

Osteosarcoma (OS) is the most common primary malignant bone tumor affecting the pediatric population with high potential to metastasize to distal sites, most commonly the lung. Insights into defining molecular features contributing to metastatic potential are lacking. We have mapped the active chromatin landscapes of OS tumors by integrating histone H3 lysine acetylated chromatin (H3K27ac) profiles (n=13), chromatin accessibility profiles (n=11) and gene expression (n=13) to understand the differences in their active chromatin profiles and its impact on molecular mechanisms driving the malignant phenotypes. Primary OS tumors from patients with metastasis (primary met) have a distinct active chromatin landscape compared to primary tumors from patients without metastatic disease (localized). The difference in chromatin activity shapes the transcriptional profile of OS. We identified novel candidate genes involved in OS pathogenesis and metastasis, including PPP1R1B, PREX1 and IGF2BP1, which exhibit increased chromatin activity in primary met along with higher transcript levels. Overall, differential chromatin activity in primary met occurs in proximity of genes regulating actin cytoskeleton organization, cellular adhesion, and extracellular matrix suggestive of their role in facilitating OS metastasis. Furthermore, chromatin profiling of tumors from metastatic lung lesions noted increases in chromatin activity in genes involved in cell migration and key intracellular signaling cascades, including the Wnt pathway. Thus, this data demonstrates that metastatic potential is intrinsically present in primary metastatic tumors and the cellular chromatin profiles further adapt to allow for successful dissemination, migration, and colonization at the distal metastatic site.

2.
JCI Insight ; 8(13)2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37279073

RESUMEN

Osteosarcoma (OS) is the most common primary bone tumor of childhood. Approximately 20%-30% of OSs carry amplification of chromosome 8q24, which harbors the oncogene c-MYC and correlates with a poor prognosis. To understand the mechanisms that underlie the ability of MYC to alter both the tumor and its surrounding tumor microenvironment (TME), we generated and molecularly characterized an osteoblast-specific Cre-Lox-Stop-Lox-c-MycT58A p53fl/+ knockin genetically engineered mouse model (GEMM). Phenotypically, the Myc-knockin GEMM had rapid tumor development with a high incidence of metastasis. MYC-dependent gene signatures in our murine model demonstrated significant homology to the human hyperactivated MYC OS. We established that hyperactivation of MYC led to an immune-depleted TME in OS demonstrated by the reduced number of leukocytes, particularly macrophages. MYC hyperactivation led to the downregulation of macrophage colony-stimulating factor 1, through increased microRNA 17/20a expression, causing a reduction of macrophage population in the TME of OS. Furthermore, we developed cell lines from the GEMM tumors, including a degradation tag-MYC model system, which validated our MYC-dependent findings both in vitro and in vivo. Our studies utilized innovative and clinically relevant models to identify a potentially novel molecular mechanism through which MYC regulates the profile and function of the OS immune landscape.


Asunto(s)
Neoplasias Óseas , MicroARNs , Osteosarcoma , Humanos , Ratones , Animales , Macrófagos Asociados a Tumores/patología , Factor Estimulante de Colonias de Macrófagos/genética , Osteosarcoma/genética , Osteosarcoma/patología , Neoplasias Óseas/patología , MicroARNs/genética , Microambiente Tumoral/genética
3.
Proc Natl Acad Sci U S A ; 120(15): e2220891120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37018203

RESUMEN

Hypoxia is a prognostic biomarker of rapidly growing cancers, where the extent of hypoxia is an indication of tumor progression and prognosis; therefore, hypoxia is also used for staging while performing chemo- and radiotherapeutics for cancer. Contrast-enhanced MRI using EuII-based contrast agents is a noninvasive method that can be used to map hypoxic tumors, but quantification of hypoxia using these agents is challenging due to the dependence of signal on the concentration of both oxygen and EuII. Here, we report a ratiometric method to eliminate concentration dependence of contrast enhancement of hypoxia using fluorinated EuII/III-containing probes. We studied three different EuII/III couples of complexes containing 4, 12, or 24 fluorine atoms to balance fluorine signal-to-noise ratio with aqueous solubility. The ratio between the longitudinal relaxation time (T1) and 19F signal of solutions containing different ratios of EuII- and EuIII-containing complexes was plotted against the percentage of EuII-containing complexes in solution. We denote the slope of the resulting curves as hypoxia indices because they can be used to quantify signal enhancement from Eu, that is related to oxygen concentration, without knowledge of the absolute concentration of Eu. This mapping of hypoxia was demonstrated in vivo in an orthotopic syngeneic tumor model. Our studies significantly contribute toward improving the ability to radiographically map and quantify hypoxia in real time, which is critical to the study of cancer and a wide range of diseases.


Asunto(s)
Flúor , Neoplasias , Humanos , Imagen por Resonancia Magnética/métodos , Hipoxia , Oxígeno
4.
Curr Protoc ; 3(2): e670, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36799651

RESUMEN

Ewing Sarcoma (EwS) is the second most common malignant bone tumor in adolescents and young adults. The single-most powerful predictor of outcome in EwS is presence of metastatic burden at the time of diagnosis. Patients with metastatic Ewing Sarcoma have an abysmal 5-year survival rate of 10%-25%, which has not changed over the past 30-40 years. Thus, unraveling underlying mechanisms of EwS metastasis are imperative for developing effective therapeutic measures. Investigations towards this goal are limited by the lack of reliable genetically engineered mouse models and specialized metastatic models. Using two established cell lines, A673 and TC71, we generated lung specific metastatic cell lines by serial orthotopic intra-tibial injection followed by isolation of cells from lung metastases. The lung metastatic lines generated exhibit distinct differential molecular signatures from the parental cells when analyzed using a multi-omics approach. These signatures overlapped with EwS patient primary bone and metastatic lung specimens supporting the clinical relevance of these preclinical models of EwS. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Intra-Tibial injection in NSG mice Basic Protocol 2: Development and characterization of lung metastatic cell line.


Asunto(s)
Neoplasias Óseas , Neoplasias Pulmonares , Tumores Neuroectodérmicos Periféricos Primitivos , Sarcoma de Ewing , Animales , Ratones , Sarcoma de Ewing/tratamiento farmacológico , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patología , Proteína EWS de Unión a ARN/genética , Proteína EWS de Unión a ARN/metabolismo , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Neoplasias Pulmonares/secundario
5.
Dis Model Mech ; 15(2)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35174853

RESUMEN

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children, with overall long-term survival rates of ∼65-70%. Thus, additional molecular insights and representative models are critical for identifying and evaluating new treatment modalities. Using MyoD-Cre-mediated introduction of mutant K-RasG12D and perturbations in p53, we developed a novel genetically engineered mouse model (GEMM) for RMS. The anatomic sites of primary RMS development recapitulated human disease, including tumors in the head, neck, extremities and abdomen. We confirmed RMS histology and diagnosis through Hematoxylin and Eosin staining, and positive immunohistochemical staining for desmin, myogenin, and phosphotungstic acid-Hematoxylin. Cell lines from GEMM tumors were established with the ability to engraft in immunocompetent mice with comparable histological and staining features as the primary tumors. Tail vein injection of cell lines had high metastatic potential to the lungs. Transcriptomic analyses of p53R172H/K-RasG12D GEMM-derived tumors showed evidence of high molecular homology with human RMS. Finally, pre-clinical use of these murine RMS lines showed similar therapeutic responsiveness to chemotherapy and targeted therapies as human RMS cell lines.


Asunto(s)
Rabdomiosarcoma , Sarcoma , Neoplasias de los Tejidos Blandos , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Rabdomiosarcoma/diagnóstico , Rabdomiosarcoma/tratamiento farmacológico , Rabdomiosarcoma/genética , Sarcoma/metabolismo , Neoplasias de los Tejidos Blandos/metabolismo , Proteína p53 Supresora de Tumor/genética
6.
Oncogene ; 40(6): 1176-1190, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33414491

RESUMEN

Ewing sarcoma (ES) is the second most common bone tumor in children and young adults. Unfortunately, there have been minimal recent advancements in improving patient outcomes, especially in metastatic and recurrent diseases. In this study, we investigated the biological role of p21-activated kinases (PAKs) in ES, and the ability to therapeutically target them in high-risk disease. Via informatics analysis, we established the inverse association of PAK1 and PAK4 expression with clinical stage and outcome in ES patients. Through expression knockdown and small-molecule inhibition of PAKs, utilizing FRAX-597, KPT-9274, and PF-3758309 in multiple ES cell lines and patient-derived xenograft models, we further explored the role of PAKs in ES tumor growth and metastatic capabilities. In vitro studies in several ES cell lines indicated that diminishing PAK1 and PAK4 expression reduces tumor cell viability, migratory, and invasive properties. In vivo studies using PAK4 inhibitors, KPT-9274 and PF-3758309 demonstrated significant inhibition of primary and metastatic tumor formation, while transcriptomic analysis of PAK4-inhibitor-treated tumors identified concomitant suppression of Notch, ß-catenin, and hypoxia-mediated signatures. In addition, the analysis showed enrichment of anti-tumor immune regulatory mechanisms, including interferon (IFN)-É£ and IFN-α responses. Altogether, our molecular and pre-clinical studies are the first to establish a critical role for PAKs in ES development and progression, and consequently as viable therapeutic targets for the treatment of high-risk ES in the near future.


Asunto(s)
Sarcoma de Ewing/tratamiento farmacológico , Quinasas p21 Activadas/genética , Acrilamidas/farmacología , Aminopiridinas/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Interferón-alfa/genética , Interferón gamma/genética , Pirazoles/farmacología , Pirroles/farmacología , Sarcoma de Ewing/genética , Sarcoma de Ewing/patología , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasas p21 Activadas/antagonistas & inhibidores
7.
Cancer Res ; 81(1): 199-212, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33168646

RESUMEN

Rhabdomyosarcoma (RMS) is the most prevalent pediatric soft-tissue sarcoma. Multimodal treatment, including surgery and traditional chemotherapy with radiotherapy, has contributed to improvements in overall survival rates. However, patients with recurrent or metastatic disease have 5-year survival rates of less than 30%. One reason for the lack of therapeutic advancement is identification and targeting of critical signaling nodes. p21-activated kinases (PAK) are a family of serine/threonine kinases downstream of multiple critical tumorigenic receptor tyrosine kinase receptors and oncogenic regulators, including IGFR and RAS signaling, that significantly contribute to aggressive malignant phenotypes. Here, we report that RMS cell lines and tumors exhibit enhanced PAK4 expression levels and activity, which are further activated by growth factors involved in RMS development. Molecular perturbation of PAK4 in multiple RMS models in vitro and in vivo resulted in inhibition of RMS development and progression. Fusion-positive and -negative RMS models were sensitive to two PAK4 small-molecule inhibitors, PF-3758309 and KPT-9274, which elicited significant antitumor and antimetastatic potential in several primary and metastatic in vivo models, including a relapsed RMS patient-derived xenograft model. Transcriptomic analysis of PAK4-targeted tumors revealed inhibition of the RAS-GTPase, Hedgehog, and Notch pathways, along with evidence of activation of antitumor immune response signatures. This PAK4-targeting gene signature showed prognostic significance for patients with sarcoma. Overall, our results show for the first time that PAK4 is a novel and viable therapeutic target for the treatment of high-risk RMS. SIGNIFICANCE: These data demonstrate a novel oncogenic role for PAK4 in rhabdomyosarcoma and show that targeting PAK4 activity is a promising viable therapeutic option for advanced rhabdomyosarcoma.


Asunto(s)
Acrilamidas/farmacología , Aminopiridinas/farmacología , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Pirazoles/farmacología , Pirroles/farmacología , Rabdomiosarcoma/patología , Quinasas p21 Activadas/antagonistas & inhibidores , Proteínas ras/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Movimiento Celular , Proliferación Celular , Niño , Humanos , Masculino , Ratones , Rabdomiosarcoma/genética , Rabdomiosarcoma/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismo , Proteínas ras/genética
8.
J Natl Cancer Inst ; 111(11): 1216-1227, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30793158

RESUMEN

BACKGROUND: The Wnt/ß-catenin pathway is closely associated with osteosarcoma (OS) development and metastatic progression. We investigated the antitumor activity of Tegavivint, a novel ß-catenin/transducin ß-like protein 1 (TBL1) inhibitor, against OS employing in vitro, ex vivo, and in vivo cell line and patient-derived xenograft (PDX) models that recapitulate high risk disease. METHODS: The antitumor efficacy of Tegavivint was evaluated in vitro using established OS and PDX-derived cell lines. Use of an ex vivo three-dimensional pulmonary metastasis assay assessed targeting of ß-catenin activity during micro- and macrometastatic development. The in vivo activity of Tegavivint was evaluated using chemoresistant and metastatic OS PDX models. Gene and protein expression were quantified by quantitative Reverse transcription polymerase chain reaction or immunoblot analysis. Bone integrity was determined via microCT. All statistical tests were two-sided. RESULTS: Tegavivint exhibited antiproliferative activity against OS cells in vitro and actively reduced micro- and macrometastatic development ex vivo. Multiple OS PDX tumors (n = 3), including paired patient primary and lung metastatic tumors with inherent chemoresistance, were suppressed by Tegavivint in vivo. We identified that metastatic lung OS cell lines (n = 2) exhibited increased stem cell signatures, including enhanced concomitant aldehyde dehydrogenase (ALDH1) and ß-catenin expression and downstream activity, which were suppressed by Tegavivint (ALDH1: control group, mean relative mRNA expression = 1.00, 95% confidence interval [CI] = 0.68 to 1.22 vs Tegavivint group, mean = 0.011, 95% CI = 0.0012 to 0.056, P < .001; ß-catenin: control group, mean relative mRNA expression = 1.00, 95% CI = 0.71 to 1.36 vs Tegavivint group, mean = 0.45, 95% CI = 0.36 to 0.52, P < .001). ALDH1high PDX-derived lung OS cells, which demonstrated enhanced metastatic potential compared with ALDHlow cells in vivo, were sensitive to Tegavivint. Toxicity studies revealed decreased bone density in male Tegavivint-treated mice (n = 4 mice per group). CONCLUSIONS: Tegavivint is a promising therapeutic agent for advanced stages of OS via its targeting of the ß-catenin/ALDH1 axis.


Asunto(s)
Aldehído Deshidrogenasa/antagonistas & inhibidores , Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Osteosarcoma/tratamiento farmacológico , beta Catenina/antagonistas & inhibidores , Animales , Apoptosis , Biomarcadores de Tumor/metabolismo , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Proliferación Celular , Inhibidores Enzimáticos/farmacología , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Osteosarcoma/metabolismo , Osteosarcoma/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto , beta Catenina/metabolismo
9.
Am J Cancer Res ; 8(9): 1752-1763, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30323968

RESUMEN

Osteosarcoma (OS) is a highly aggressive mesenchymal malignancy and the most common primary bone tumor in the pediatric population. OS frequently presents with or develops distal metastases. Patients with metastatic disease have extremely poor survival rates, thus necessitating improved molecular insights into OS metastatic biology. Utilizing our previously characterized genetically engineered mouse model (GEMM) of metastatic OS, we identified enhanced differential expression of Transglutaminase-2 (TGM2) in metastatic OS. However, the role of TGM2 in sarcoma development and metastatic progression remains largely undefined. To further investigate the role of TGM2 in OS metastasis, we performed both gain- and loss-of-function studies for TGM2 in human and mouse OS cell lines. Our data provide evidence that enhanced expression of TGM2 in metastatic OS contributes to migratory and invasive phenotypes. Besides the effects on metastatic phenotypes, we also observed that TGM2 contributes to OS stem-like properties. In addition, treatment with transglutaminase inhibitors had analogous effects on proliferation and migration to TGM2 knockdown. Finally, in vivo xenograft studies demonstrated that TGM2 functionally alters metastatic potential and survival outcome. Together, these data highlight TGM2 as a pro-metastatic factor in OS and a potential avenue for future therapeutic intervention to inhibit metastatic disease.

10.
Int J Radiat Oncol Biol Phys ; 101(1): 118-127, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29534895

RESUMEN

PURPOSE: Radiation therapy (RT) is a viable therapeutic option for Ewing sarcoma (ES) patients. However, little progress has been made to elucidate the mechanisms of radioresistance. This study establishes a novel ES irradiation-adapted model designed to assess molecular and 18F fluorodeoxyglucose (FDG) positron emission tomography (PET) alterations secondary to RT. METHODS AND MATERIALS: Radiation-adapted cell lines (RACLs) were created in vitro by exposing ES human cell lines to fractionated doses of radiation. Assays to assess migration or invasion potential and RNA expression were performed on the RACLs. Orthotopic intratibial in vivo investigations were performed with irradiation-sensitive and irradiation-adapted ES cells to generate tumors. Transplanted mice were imaged using 18F-FDG PET followed by fractionated RT directed at the primary tumor. Mice were monitored for tumor regression and change in metabolic activity using 18F-FDG PET imaging. Protein expression analyses were performed on the RACLs and orthotopic tumors. RESULTS: Exposure to fractionated doses of radiation caused a significant increase in migratory and invasive properties in the RACLs when compared with nonirradiated wild-type ES cells. RACL transcriptomic and proteomic analysis suggests enhanced activation of the mammalian target of rapamycin-AKT pathway when compared with wild-type ES cells. Irradiation-adapted tumors demonstrated significantly less tumor regression (P = .03) than wild-type tumors. Wild-type tumors also had decreased expression of lactate dehydrogenase A protein and significantly lower metabolic activity after RT compared with irradiation-adapted tumors (P = .03). CONCLUSIONS: We developed novel in vitro and in vivo irradiation-adapted ES models. In vitro investigations revealed increased migratory and invasive phenotypes in the RACLs. In vivo investigations demonstrated increased metabolic activity and significantly decreased sensitivity to RT in the irradiation-adapted tumors as demonstrated by growth response curves and 18F-FDG PET activity. Investigations of the RACLs identified possible radiosensitizing-dependent targets in lactate dehydrogenase A and the mammalian target of rapamycin-AKT pathway.


Asunto(s)
Neoplasias Óseas/radioterapia , Tolerancia a Radiación , Sarcoma de Ewing/radioterapia , Adaptación Fisiológica , Animales , Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Línea Celular Tumoral , Movimiento Celular/efectos de la radiación , Fluorodesoxiglucosa F18 , Humanos , L-Lactato Deshidrogenasa/metabolismo , Ratones , Invasividad Neoplásica , Tomografía de Emisión de Positrones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Hipofraccionamiento de la Dosis de Radiación , Radiofármacos , Sarcoma de Ewing/diagnóstico por imagen , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patología , Serina-Treonina Quinasas TOR/metabolismo
11.
Oncotarget ; 8(44): 77292-77308, 2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-29100387

RESUMEN

Ewing sarcoma (EWS) is a highly aggressive and metabolically active malignant tumor. Metabolic activity can broadly be characterized by features of glycolytic activity and oxidative phosphorylation. We have further characterized metabolic features of EWS cells to identify potential therapeutic targets. EWS cells had significantly more glycolytic activity compared to their non-malignant counterparts. Thus, metabolic inhibitors of glycolysis such as 2-deoxy-D-glucose (2DG) and of the mitochondrial respiratory pathway, such as metformin, were evaluated as potential therapeutic agents against a panel of EWS cell lines in vitro. Results indicate that 2DG alone or in combination with metformin was effective at inducing cell death in EWS cell lines. The predominant mechanism of cell death appears to be through stimulating apoptosis leading into necrosis with concomitant activation of AMPK-α. Furthermore, we demonstrate that the use of metabolic modulators can target putative EWS stem cells, both in vitro and in vivo, and potentially overcome chemotherapeutic resistance in EWS. Based on these data, clinical strategies using drugs targeting tumor cell metabolism present a viable therapeutic modality against EWS.

12.
Int J Cancer ; 141(10): 2062-2075, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28748534

RESUMEN

Ewing Sarcoma (ES) is a highly aggressive bone tumor with peak incidence in the adolescent population. It has a high propensity to metastasize, which is associated with dismal survival rates of approximately 25%. To further understand mechanisms of metastasis we investigated microRNA regulatory networks in ES. Our studies focused on miR-130b due to our analysis that enhanced expression of this microRNA has clinical relevance in multiple sarcomas, including ES. Our studies provide insights into a novel positive feedback network involving the direct regulation of miR-130b and activation of downstream signaling events contributing toward sarcoma metastasis. Specifically, we demonstrated miR-130b induces proliferation, invasion, and migration in vitro and increased metastatic potential in vivo. Using microarray analysis of ES cells with differential miR-130b expression we identified alterations in downstream signaling cascades including activation of the CDC42 pathway. We identified ARHGAP1, which is a negative regulator of CDC42, as a novel, direct target of miR-130b. In turn, downstream activation of PAK1 activated the JNK and AP-1 cascades and downstream transcriptional targets including IL-8, MMP1 and CCND1. Furthermore, chromatin immunoprecipitation of endogenous AP-1 in ES cells demonstrated direct binding to an upstream consensus binding site within the miR-130b promoter. Finally, small molecule inhibition of PAK1 blocked miR-130b activation of JNK and downstream AP-1 target genes, including primary miR-130b transcripts, and miR-130b oncogenic properties, thus identifying PAK1 as a novel therapeutic target for ES. Taken together, our findings identify and characterize a novel, targetable miR-130b regulatory network that promotes ES metastasis.


Asunto(s)
Neoplasias Óseas/patología , Proteínas Activadoras de GTPasa/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/secundario , Neoplasias Pulmonares/secundario , MicroARNs/genética , Sarcoma de Ewing/patología , Animales , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Retroalimentación Fisiológica , Proteínas Activadoras de GTPasa/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Estadificación de Neoplasias , Pronóstico , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Transducción de Señal , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismo
13.
Chem Sci ; 8(12): 8345-8350, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29780447

RESUMEN

Magnetic resonance imaging (MRI) using redox-active, EuII-containing complexes is one of the most promising techniques for noninvasively imaging hypoxia in vivo. In this technique, positive (T1-weighted) contrast enhancement persists in areas of relatively low oxidizing ability, such as hypoxic tissue. Herein, we describe a fluorinated, EuII-containing complex in which the redox-active metal is caged by intramolecular interactions. The position of the fluorine atoms enables temperature-responsive contrast enhancement in the reduced form of the contrast agent and detection of the oxidized contrast agent via MRI in vivo. Positive contrast is observed in 1H-MRI with Eu in the +2 oxidation state, and chemical exchange saturation transfer and 19F-MRI signal are observed with Eu in the +3 oxidation state. Contrast enhancement is controlled by the redox state of Eu, and modulated by the fluorous interactions that cage a bound water molecule reduce relaxivity in a temperature-dependent fashion. Together, these advancements constitute the first report of in vivo, redox-responsive imaging using 19F-MRI.

14.
BMC Cancer ; 16(1): 869, 2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27821163

RESUMEN

BACKGROUND: Osteosarcoma (OS), which has a high potential for developing metastatic disease, is the most frequent malignant bone tumor in children and adolescents. Molecular analysis of a metastatic genetically engineered mouse model of osteosarcoma identified enhanced expression of Secreted Frizzled-Related Protein 2 (sFRP2), a putative regulator of Wnt signaling within metastatic tumors. Subsequent analysis correlated increased expression in the human disease, and within highly metastatic OS cells. However, the role of sFRP2 in osteosarcoma development and progression has not been well elucidated. METHODS: Studies using stable gain or loss-of-function alterations of sFRP2 within human and mouse OS cells were performed to assess changes in cell proliferation, migration, and invasive ability in vitro, via both transwell and 3D matrigel assays. In additional, xenograft studies using overexpression of sFRP2 were used to assess effects on in vivo metastatic potential. RESULTS: Functional studies revealed stable overexpression of sFRP2 within localized human and mouse OS cells significantly increased cell migration and invasive ability in vitro and enhanced metastatic potential in vivo. Additional studies exploiting knockdown of sFRP2 within metastatic human and mouse OS cells demonstrated decreased cell migration and invasion ability in vitro, thus corroborating a critical biological phenotype carried out by sFRP2. Interestingly, alterations in sFRP2 expression did not alter OS proliferation rates or primary tumor development. CONCLUSIONS: While future studies further investigating the molecular mechanisms contributing towards this sFRP2-dependent phenotype are needed, our studies clearly provide evidence that aberrant expression of sFRP2 can contribute to the invasive and metastatic potential for osteosarcoma.


Asunto(s)
Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Proteínas de la Membrana/metabolismo , Osteosarcoma/metabolismo , Osteosarcoma/patología , Animales , Neoplasias Óseas/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Proteínas de la Membrana/genética , Ratones , Invasividad Neoplásica , Metástasis de la Neoplasia , Osteosarcoma/genética
15.
Cancer Med ; 4(7): 977-88, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25784290

RESUMEN

Osteosarcoma (OS) is the primary bone tumor in children and young adults. Currently, there are no reliable, noninvasive biologic markers to detect the presence or progression of disease, assess therapy response, or provide upfront prognostic insights. MicroRNAs (miRNAs) are evolutionarily conserved, stable, small noncoding RNA molecules that are key posttranscriptional regulators and are ideal candidates for circulating biomarker development due to their stability in plasma, ease of isolation, and the unique expressions associated with specific disease states. Using a qPCR-based platform that analyzes more than 750 miRNAs, we analyzed control and diseased-associated plasma from a genetically engineered mouse model of OS to identify a profile of four plasma miRNAs. Subsequent analysis of 40 human patient samples corroborated these results. We also identified disease-specific endogenous reference plasma miRNAs for mouse and human studies. Specifically, we observed plasma miR-205-5p was decreased 2.68-fold in mice with OS compared to control mice, whereas, miR-214, and miR-335-5p were increased 2.37- and 2.69-fold, respectively. In human samples, the same profile was seen with miR-205-5p decreased 1.75-fold in patients with OS, whereas miR-574-3p, miR-214, and miR-335-5p were increased 3.16-, 8.31- and 2.52-fold, respectively, compared to healthy controls. Furthermore, low plasma levels of miR-214 in metastatic patients at time of diagnosis conveyed a significantly better overall survival. This is the first study to identify plasma miRNAs that could be used to prospectively identify disease, potentially monitor therapeutic efficacy and have prognostic implications for OS patients.


Asunto(s)
Neoplasias Óseas/diagnóstico , Neoplasias Óseas/genética , MicroARNs/genética , Osteosarcoma/diagnóstico , Osteosarcoma/genética , Transcriptoma , Adolescente , Adulto , Aloinjertos , Animales , Biomarcadores de Tumor , Neoplasias Óseas/mortalidad , Neoplasias Óseas/terapia , Niño , Modelos Animales de Enfermedad , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Femenino , Estudios de Seguimiento , Perfilación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Noqueados , MicroARNs/sangre , Estadificación de Neoplasias , Osteosarcoma/mortalidad , Osteosarcoma/terapia , Pronóstico , Curva ROC , Reproducibilidad de los Resultados , Adulto Joven
16.
J Endocrinol ; 212(2): 139-47, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22107955

RESUMEN

GnRH is the main regulator of the hypothalamic-pituitary-gonadal (H-P-G) axis. GnRH stimulates the pituitary gonadotroph to synthesize and secrete gonadotrophins (LH and FSH), and this effect of GnRH is dependent on the availability of glucose and other nutrients. Little is known about whether GnRH regulates glucose metabolism in the gonadotroph. This study examined the regulation of glucose transporters (Gluts) by GnRH in the LßT2 gonadotroph cell line. Using real-time PCR analysis, the expression of Glut1, -2, -4, and -8 was detected, but Glut1 mRNA expression level was more abundant than the mRNA expression levels of Glut2, -4, and -8. After the treatment of LßT2 cells with GnRH, Glut1 mRNA expression was markedly induced, but there was no GnRH-induction of Glut2, -4, or -8 mRNA expression in LßT2 cells. The effect of GnRH on Glut1 mRNA expression is partly mediated by ERK activation. GnRH increased GLUT1 protein and stimulated GLUT1 translocation to the cell surface of LßT2 cells. Glucose uptake assays were performed in LßT2 cells and showed that GnRH stimulates glucose uptake in the gonadotroph. Finally, exogenous treatment of mice with GnRH increased the expression of Glut1 but not the expression of Glut2, -4, or -8 in the pituitary. Therefore, regulation of glucose metabolism by GnRH via changes in Gluts expression and subcellular location in the pituitary gonadotroph reveals a novel response of the gonadotroph to GnRH.


Asunto(s)
Transportador de Glucosa de Tipo 1/metabolismo , Glucosa/metabolismo , Gonadotrofos/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Regulación hacia Arriba , Animales , Transporte Biológico , Línea Celular , Membrana Celular/metabolismo , Activación Enzimática/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/química , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/genética , Gonadotrofos/citología , Gonadotrofos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación/efectos de los fármacos , Hipófisis/crecimiento & desarrollo , Hipófisis/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , ARN Mensajero/metabolismo , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...