Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Front Vet Sci ; 11: 1382652, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803805

RESUMEN

Low back pain poses a significant societal burden, with progressive intervertebral disc degeneration (IDD) emerging as a pivotal contributor to chronic pain. Improved animal models of progressive IDD are needed to comprehensively investigate new diagnostic and therapeutic approaches to managing IDD. Recent studies underscore the immune system's involvement in IDD, particularly with regards to the role of immune privileged tissues such as the nucleus pulposus (NP) becoming an immune targeting following initial disc injury. We therefore hypothesized that generating an active immune response against NP antigens with an NP vaccine could significantly accelerate and refine an IDD animal model triggered by mechanical puncture of the disc. To address this question, rabbits were immunized against NP antigens following disc puncture, and the impact on development of progressive IDD was assessed radiographically, functionally, and histologically compared between vaccinated and non-vaccinated animals over a 12-week period. Immune responses to NP antigens were assessed by ELISA and Western blot. We found that the vaccine elicited strong immune responses against NP antigens, including a dominant ~37 kD antigen. Histologic evaluation revealed increases IDD in animals that received the NP vaccine plus disc puncture, compared to disc puncture and vaccine only animals. Imaging evaluation evidenced a decrease in disc height index and higher scores of disc degeneration in animals after disc punctures and in those animals that received the NP vaccine in addition to disc puncture. These findings therefore indicate that it is possible to elicit immune responses against NP antigens in adult animals, and that these immune responses may contribute to accelerated development of IDD in a novel immune-induced and accelerated IDD model.

2.
Commun Biol ; 7(1): 496, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658617

RESUMEN

Osteosarcoma (OS) is a heterogeneous, aggressive malignancy of the bone that disproportionally affects children and adolescents. Therapeutic interventions for OS are limited, which is in part due to the complex tumor microenvironment (TME). As such, we used single-cell RNA sequencing (scRNA-seq) to describe the cellular and molecular composition of the TME in 6 treatment-naïve dogs with spontaneously occurring primary OS. Through analysis of 35,310 cells, we identified 41 transcriptomically distinct cell types including the characterization of follicular helper T cells, mature regulatory dendritic cells (mregDCs), and 8 tumor-associated macrophage (TAM) populations. Cell-cell interaction analysis predicted that mregDCs and TAMs play key roles in modulating T cell mediated immunity. Furthermore, we completed cross-species cell type gene signature homology analysis and found a high degree of similarity between human and canine OS. The data presented here act as a roadmap of canine OS which can be applied to advance translational immuno-oncology research.


Asunto(s)
Neoplasias Óseas , Enfermedades de los Perros , Osteosarcoma , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Microambiente Tumoral , Perros , Animales , Osteosarcoma/genética , Osteosarcoma/veterinaria , Osteosarcoma/inmunología , Osteosarcoma/patología , Análisis de Secuencia de ARN/veterinaria , Neoplasias Óseas/genética , Neoplasias Óseas/veterinaria , Neoplasias Óseas/inmunología , Neoplasias Óseas/patología , Enfermedades de los Perros/genética , Enfermedades de los Perros/inmunología , Enfermedades de los Perros/patología , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Transcriptoma , Femenino , Regulación Neoplásica de la Expresión Génica , Masculino
3.
Cancer Immunol Immunother ; 73(5): 77, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38554158

RESUMEN

The use of large animal spontaneous models of solid cancers, such as dogs with osteosarcoma (OS), can help develop new cancer immunotherapy approaches, including chimeric antigen receptor (CAR) T cells. The goal of the present study was to generate canine CAR T cells targeting the B7-H3 (CD276) co-stimulatory molecule overexpressed by several solid cancers, including OS in both humans and dogs, and to assess their ability to recognize B7-H3 expressed by canine OS cell lines or by canine tumors in xenograft models. A second objective was to determine whether a novel dual CAR that expressed a chemokine receptor together with the B7-H3 CAR improved the activity of the canine CAR T cells. Therefore, in the studies reported here we examined B7-H3 expression by canine OS tumors, evaluated target engagement by canine B7-H3 CAR T cells in vitro, and compared the relative effectiveness of B7-H3 CAR T cells versus B7-H3-CXCR2 dual CAR T cells in canine xenograft models. We found that most canine OS tumors expressed B7-H3; whereas, levels were undetectable on normal dog tissues. Both B7-H3 CAR T cells demonstrated activation and OS-specific target killing in vitro, but there was significantly greater cytokine production by B7-H3-CXCR2 CAR T cells. In canine OS xenograft models, little anti-tumor activity was generated by B7-H3 CAR T cells; whereas, B7-H3-CXCR2 CAR T cells significantly inhibited tumor growth, inducing complete tumor elimination in most treated mice. These findings indicated therefore that addition of a chemokine receptor could significantly improve the anti-tumor activity of canine B7-H3 CAR T cells, and that evaluation of this new dual CAR construct in dogs with primary or metastatic OS is warranted since such studies could provide a critical and realistic validation of the chemokine receptor concept.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Perros , Animales , Ratones , Antígenos B7/metabolismo , Osteosarcoma/terapia , Neoplasias Óseas/patología , Linfocitos T , Receptores de Quimiocina , Línea Celular Tumoral
4.
J Am Vet Med Assoc ; 262(S1): S73-S82, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38295517

RESUMEN

OBJECTIVE: To investigate mechanistically the reported beneficial effects of immune-activated mesenchymal stromal cell (MSC) therapy to treat equine septic arthritis, leveraging Nanostring technology. ANIMALS: 8 Quarter Horses with induced tibiotarsal Staphylococcus aureus septic arthritis treated IA with either Toll-like receptor-3 agonist polyinosinic:polycytidylic acid-activated MSCs + vancomycin antimicrobials (TLR-MSC-VAN; n = 4) or antimicrobials (VAN; 4). METHODS: Synovial tissues were collected and fixed in neutral-buffered 10% formalin, and formalin-fixed paraffin-embedded synovial and osteochondral tissues were sequenced using a custom-designed 200-gene equine Nanostring nCounter immune panel to directly quantify expression of key immune and cartilage-related genes. Immunohistochemistry to detect CD3+ T cells was performed on synovial tissues to further quantify T-cell infiltration in TLR-MSC-VAN- versus VAN-treated joints. RESULTS: Comparison of synovial transcriptomes between groups revealed moderate changes in differential gene expression, with upregulated expression of 9 genes and downregulated expression of 17 genes with fold change ≥ 2 or ≤ -2 and a significant false discovery rate-adjusted P value of ≤ .05. The most upregulated genes in TLR-MSC-VAN-treated horses included those related to T-lymphocyte recruitment and function, while pathways related to innate immune activation and inflammation were significantly downregulated. Immunohistochemistry and quantitation of CD3+ T-cell infiltrates revealed a numerically greater infiltrate in synovial tissues of TLR-MSC-VAN-treated horses, which did not reach statistical significance in this small sample set (P = .20). CLINICAL RELEVANCE: Targeted transcriptomic analyses using an equine Nanostring immune and cartilage health panel provided new mechanistic insights into how innate and adaptive immune cells within synovial tissues respond to TLR-activated MSC treatment when used to treat septic arthritis.


Asunto(s)
Artritis Infecciosa , Enfermedades de los Caballos , Membrana Sinovial , Linfocitos T , Animales , Caballos , Artritis Infecciosa/veterinaria , Enfermedades de los Caballos/terapia , Enfermedades de los Caballos/inmunología , Membrana Sinovial/citología , Células Madre Mesenquimatosas , Transcriptoma , Infecciones Estafilocócicas/veterinaria , Perfilación de la Expresión Génica/veterinaria , Femenino , Masculino , Trasplante de Células Madre Mesenquimatosas/veterinaria
5.
Res Sq ; 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37609233

RESUMEN

Osteosarcoma (OS) is a heterogeneous, aggressive malignancy of the bone that disproportionally affects children and adolescents. Therapeutic interventions for OS are limited, which is in part due to the complex tumor microenvironment (TME) that has proven to be refractory to immunotherapies. Thus, there is a need to better define the complexity of the OS TME. To address this need, we used single-cell RNA sequencing (scRNA-seq) to describe the cellular and molecular composition of the TME in 6 treatment-naïve dogs with spontaneously occurring primary OS. Through analysis of 35,310 cells, we identified 30 distinct immune cell types, 9 unique tumor populations, 1 cluster of fibroblasts, and 1 cluster of endothelial cells. Independent reclustering of major cell types revealed the presence of follicular helper T cells, mature regulatory dendritic cells (mregDCs), and 8 transcriptomically distinct macrophage/monocyte populations. Cell-cell interaction inference analysis predicted that mregDCs and tumor-associated macrophages (TAMs) play key roles in modulating T cell mediate immunity. Furthermore, we used publicly available human OS scRNA-seq data to complete a cross-species cell type gene signature homology analysis. The analysis revealed a high degree of cell type gene signature homology between species, suggesting the cellular composition of OS is largely conserved between humans and dogs. Our findings provide key new insights into the biology of canine OS and highlight the conserved features of OS across species. Generally, the data presented here acts as a cellular and molecular roadmap of canine OS which can be applied to advance the translational immuno-oncology research field.

6.
Front Immunol ; 14: 1162700, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37275879

RESUMEN

Translationally relevant animal models are essential for the successful translation of basic science findings into clinical medicine. While rodent models are widely accessible, there are numerous limitations that prevent the extrapolation of findings to human medicine. One approach to overcome these limitations is to use animal models that are genetically diverse and naturally develop disease. For example, pet dogs spontaneously develop diseases that recapitulate the natural progression seen in humans and live in similar environments alongside humans. Thus, dogs represent a useful animal model for many areas of research. Despite the value of the canine model, species specific reagent limitations have hampered in depth characterization of canine immune cells, which constrains the conclusions that can be drawn from canine immunotherapy studies. To address this need, we used single-cell RNA sequencing to characterize the heterogeneity of circulating leukocytes in healthy dogs (n = 7) and osteosarcoma (OS) affected dogs (n = 10). We present a cellular atlas of leukocytes in healthy dogs, then employ the dataset to investigate the impact of primary OS tumors on the transcriptome of circulating leukocytes. We identified 36 unique cell populations amongst dog circulating leukocytes, with a remarkable amount of heterogeneity in CD4 T cell subtypes. In our comparison of healthy dogs and dogs with OS, we identified relative increases in the abundances of polymorphonuclear (PMN-) and monocytic (M-) myeloid-derived suppressor cells (MDSCs), as well as aberrations in gene expression within myeloid cells. Overall, this study provides a detailed atlas of canine leukocytes and investigates how the presence of osteosarcoma alters the transcriptional profiles of circulating immune cells.


Asunto(s)
Neoplasias Óseas , Leucocitos , Osteosarcoma , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Análisis de Secuencia de ARN , Animales , Perros , Osteosarcoma/genética , Osteosarcoma/veterinaria , Neoplasias Óseas/genética , Neoplasias Óseas/veterinaria , Transcriptoma , Masculino , Femenino
7.
Animals (Basel) ; 13(10)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37238119

RESUMEN

Given the rapid potential spread of agricultural pathogens, and the lack of vaccines for many, there is an important unmet need for strategies to induce rapid and non-specific immunity against these viral and bacterial threats. One approach to the problem is to generate non-specific immune responses at mucosal surfaces to rapidly protect from entry and replication of both viral and bacterial pathogens. Using complexes of charged nanoparticle liposomes with both antiviral and antibacterial toll-like receptor (TLR) nucleic acid ligands (termed liposome-TLR complexes or LTC), we have previously demonstrated considerable induction of innate immune responses in nasal and oropharyngeal tissues and protection from viral and bacterial pathogens in mixed challenge studies in rodents, cattle, and companion animals. Therefore, in the present study, we used in vitro assays to evaluate the ability of the LTC immune stimulant to activate key innate immune pathways, particularly interferon pathways, in cattle, swine, and poultry. We found that LTC complexes induced strong production of type I interferons (IFNα and IFNß) in both macrophages and leukocyte cultures from all three species. In addition, the LTC complexes induced the production of additional key protective cytokines (IL-6, IFNγ, and TNFα) in macrophages and leukocytes in cattle and poultry. These findings indicate that the LTC mucosal immunotherapeutic has the capability to activate key innate immune defenses in three major agricultural species and potentially induce broad protective immunity against both viral and bacterial pathogens. Additional animal challenge studies are warranted to evaluate the protective potential of LTC immunotherapy in cattle, swine, and poultry.

8.
J Orthop Res ; 41(4): 902-912, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36030381

RESUMEN

Osteoarthritis (OA) is a leading cause of morbidity among aging populations, yet symptom and/or disease-modification remains elusive. Adipose-derived mesenchymal stromal cells (adMSCs) have demonstrated immunomodulatory and anti-inflammatory properties that may alleviate clinical signs and interrupt disease onset and progression. Indeed, multiple manuscripts have evaluated intra-articular administration of adMSCs as a therapeutic; however, comparatively few evaluations of systemic delivery methods have been published. Therefore, the aim of this study was to evaluate the short-term impact of intravenous (IV) delivery of allogeneic adMSCs in an established model of spontaneous OA, the Hartley guinea pig. Animals with moderate OA received once weekly injections of 2 × 106 adMSCs or vehicle control for 4 weeks in peripheral veins; harvest occurred 2 weeks after the final injection. Systemic administration of adMSCs resulted in no adverse effects and was efficacious in reducing clinical signs of OA (as assessed by computer-aided gait analysis) compared to control injected animals. Further, there were significant decreases in key inflammatory mediators (including monocyte chemoattractant protein-1, tumor necrosis factor, and prostaglandin E2 ) both systemically (liver, kidney, and serum) and locally in the knee (joint tissues and synovial fluid) in animals treated with IV adMSCs relative to controls (as per enzyme-linked immunosorbent assay and/or immunohistochemistry, dictated by tissue sample). Thus, systemic administration of adMSCs by IV injection significantly improved gait parameters and reduced both systemic and intra-articular inflammatory mediators in animals with OA. These findings demonstrate the potential utility of alternative delivery approaches for cellular therapy of OA, particularly for patients with multiple affected joints.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Osteoartritis de la Rodilla , Osteoartritis , Animales , Cobayas , Inyecciones Intravenosas , Osteoartritis/patología , Articulación de la Rodilla/patología , Inflamación , Inyecciones Intraarticulares , Osteoartritis de la Rodilla/patología , Trasplante de Células Madre Mesenquimatosas/métodos
9.
Clin Cancer Res ; 28(4): 662-676, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34580111

RESUMEN

PURPOSE: There is increasing recognition that progress in immuno-oncology could be accelerated by evaluating immune-based therapies in dogs with spontaneous cancers. Osteosarcoma (OS) is one tumor for which limited clinical benefit has been observed with the use of immune checkpoint inhibitors. We previously reported the angiotensin receptor blocker losartan suppressed metastasis in preclinical mouse models through blockade of CCL2-CCR2 monocyte recruitment. Here we leverage dogs with spontaneous OS to determine losartan's safety and pharmacokinetics associated with monocyte pharmacodynamic endpoints, and assess its antitumor activity, in combination with the kinase inhibitor toceranib. PATIENTS AND METHODS: CCL2 expression, monocyte infiltration, and monocyte recruitment by human and canine OS tumors and cell lines were assessed by gene expression, ELISA, and transwell migration assays. Safety and efficacy of losartan-toceranib therapy were evaluated in 28 dogs with lung metastatic OS. Losartan PK and monocyte PD responses were assessed in three dose cohorts of dogs by chemotaxis, plasma CCL2, and multiplex cytokine assays, and RNA-seq of losartan-treated human peripheral blood mononuclear cells. RESULTS: Human and canine OS cells secrete CCL2 and elicit monocyte migration, which is inhibited by losartan. Losartan PK/PD studies in dogs revealed that a 10-fold-higher dose than typical antihypertensive dosing was required for blockade of monocyte migration. Treatment with high-dose losartan and toceranib was well-tolerated and induced a clinical benefit rate of 50% in dogs with lung metastases. CONCLUSIONS: Losartan inhibits the CCL2-CCR2 axis, and in combination with toceranib, exerts significant biological activity in dogs with metastatic osteosarcoma, supporting evaluation of this drug combination in patients with pediatric osteosarcoma. See related commentary by Weiss et al., p. 571.


Asunto(s)
Neoplasias Óseas , Enfermedades de los Perros , Osteosarcoma , Animales , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/veterinaria , Enfermedades de los Perros/tratamiento farmacológico , Perros , Humanos , Leucocitos Mononucleares , Losartán/farmacología , Losartán/uso terapéutico , Ratones , Monocitos , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/veterinaria
10.
Cancer Res Commun ; 2(12): 1657-1667, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36644324

RESUMEN

Purpose: Malignant gliomas have a highly immune suppressive tumor microenvironment (TME) which renders them largely unresponsive to conventional therapeutics. Therefore, the present study evaluated a therapeutic protocol designed overcome the immune barrier by combining myeloid cell targeted immunotherapy with tumor vaccination. Experimental Design: We utilized a spontaneously occurring canine glioma model to investigate an oral TME modifying immunotherapy in conjunction with cancer stem cell (CSC) vaccination. Dogs were treated daily with losartan (monocyte migration inhibitor) and propranolol (myeloid-derived suppressor cell depleting agent) plus anti-CSC vaccination on a bi-weekly then monthly schedule. Tumor volume was monitored by MRI and correlated with patient immune responses. Results: Ten dogs with histologically confirmed gliomas were enrolled into a prospective, open-label clinical trial to evaluate the immunotherapy protocol. Partial tumor regression was observed in 2 dogs, while 6 dogs experienced stable disease, for an overall clinical benefit rate of 80%. Overall survival times (median = 351 days) and progression-free intervals (median = 163 days) were comparable to prior studies evaluating surgical debulking followed by immunotherapy. Dogs with detectable anti-CSC antibody responses had an increased overall survival time relative to dogs that did not generate antibody responses (vaccine responder MST = 500 days; vaccine non-responder MST = 218 days; p = 0.02). Conclusions: These findings suggest that combining myeloid cell targeted oral immunotherapy with tumor vaccination can generate objective tumor responses, even in the absence of conventional therapy. Overall, this approach has promise as a readily implemented therapeutic strategy for use in brain cancer patients.


Asunto(s)
Neoplasias Encefálicas , Vacunas contra el Cáncer , Glioma , Animales , Perros , Propranolol , Losartán/farmacología , Estudios Prospectivos , Neoplasias Encefálicas/tratamiento farmacológico , Glioma/tratamiento farmacológico , Vacunas contra el Cáncer/uso terapéutico , Vacunación/veterinaria , Microambiente Tumoral
11.
BMC Vet Res ; 15(1): 330, 2019 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-31519215

RESUMEN

BACKGROUND: Non-specific immunotherapeutics have been evaluated previously in dogs, primarily for cancer treatment. However, there remains a need for a more broadly targeted, general purpose immunotherapeutic capable of activating innate immune defenses for non-specific protection or early treatment of viral and bacterial infections. To address need, our group has developed a liposomal immune stimulant (liposome-TLR complexes, LTC) containing TLR 3 and 9 agonists specifically designed to activate mucosal immune defenses in sites such as nasal cavity and oropharynx, following topical delivery. In this study, we evaluated the local immune stimulatory properties of LTC in vitro and in healthy purpose-bred dogs, including activation of cellular recruitment and cytokine production. The ability of LTC treatment to elicit effective antiviral immunity was assessed in dogs following a canine herpesvirus outbreak, and the impact of LTC treatment on the local microbiome of the oropharynx was also investigated. RESULTS: These studies revealed that LTC potently activated innate immune responses in vitro and triggered significant recruitment of inflammatory monocytes and T cells into the nasal cavity and oropharynx of healthy dogs. Administration of LTC to dogs shortly after an outbreak of canine herpesvirus infection resulted in significant reduction in clinical signs of infection. Interestingly, administration of LTC to healthy dogs did not disrupt the microbiome in the oropharynx, suggesting resiliency of the microflora to transient immune activation. CONCLUSIONS: Taken together, these results indicate that LTC administration mucosally to dogs can trigger local innate immune activation and activation of antiviral immunity, without significantly disrupting the composition of the local microbiome. Thus, the LTC immune stimulant has potential for use as a non-specific immunotherapy for prevention or early treatment of viral and bacterial infections in dogs.


Asunto(s)
Perros/inmunología , Inmunidad Innata/efectos de los fármacos , Liposomas/administración & dosificación , Membrana Mucosa/efectos de los fármacos , Administración a través de la Mucosa , Animales , Enfermedades de los Perros/inmunología , Enfermedades de los Perros/virología , Infecciones por Herpesviridae/veterinaria , Herpesvirus Cánido 1 , Membrana Mucosa/inmunología , Ácidos Nucleicos/inmunología , Orofaringe/microbiología
12.
J Immunol ; 202(10): 3087-3102, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30971441

RESUMEN

Inflammatory monocytes have been shown to play key roles in cancer metastasis through promotion of tumor cell extravasation, growth, and angiogenesis. Monocyte recruitment to metastases is mediated primarily via the CCL2-CCR2 chemotactic axis. Thus, disruption of this axis represents an attractive therapeutic target for the treatment of metastatic disease. Losartan, a type I angiotensin II receptor (AT1R) antagonist, has been previously shown to have immunomodulatory actions involving monocyte and macrophage activity. However, the exact mechanisms accounting for these effects have not been fully elucidated. Therefore, we investigated the effects of losartan and its primary metabolite on CCL2-mediated monocyte recruitment and CCR2 receptor function using mouse tumor models and in vitro human monocyte cultures. We show, in this study, that losartan and its metabolite potently inhibit monocyte recruitment through the noncompetitive inhibition of CCL2-induced ERK1/2 activation, independent of AT1R activity. Studies in experimental metastasis models demonstrated that losartan treatment significantly reduced the metastatic burden in mice, an effect associated with a significant decrease in CD11b+/Ly6C+-recruited monocytes in the lungs. Collectively, these results indicate that losartan can exert antimetastatic activity by inhibiting CCR2 signaling and suppressing monocyte recruitment and therefore suggest that losartan (and potentially other AT1R blocker drugs) could be repurposed for use in cancer immunotherapy.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Losartán/farmacología , Neoplasias Pulmonares , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Monocitos/inmunología , Proteínas de Neoplasias/inmunología , Neoplasias Experimentales , Receptor de Angiotensina Tipo 1/inmunología , Receptores CCR2/inmunología , Animales , Línea Celular Tumoral , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Sistema de Señalización de MAP Quinasas/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos ICR , Ratones Noqueados , Monocitos/patología , Metástasis de la Neoplasia , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/patología
13.
Sci Rep ; 7(1): 9575, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28851894

RESUMEN

Chronic bacterial infections associated with biofilm formation are often difficult to resolve without extended courses of antibiotic therapy. Mesenchymal stem cells (MSC) exert antibacterial activity in vitro and in acute bacterial infection models, but their activity in chronic infection with biofilm models has not been previously investigated. Therefore, we studied the effects of MSC administration in mouse and dog models of chronic infections associated with biofilms. Mice with chronic Staphylococcus aureus implant infections were treated by i.v. administration of activated or non-activated MSC, with or without antibiotic therapy. The most effective treatment protocol was identified as activated MSC co-administered with antibiotic therapy. Activated MSC were found to accumulate in the wound margins several days after i.v. administration. Macrophages in infected tissues assumed an M2 phenotype, compared to untreated infections which contained predominately M1 macrophages. Bacterial killing by MSC was found to be mediated in part by secretion of cathelicidin and was significantly increased by antibiotics. Studies in pet dogs with spontaneous chronic multi drug-resistant wound infections demonstrated clearance of bacteria and wound healing following repeated i.v. administration of activated allogeneic canine MSC. Thus, systemic therapy with activated MSC may be an effective new, non-antimicrobial approach to treatment of chronic, drug-resistant infections.


Asunto(s)
Antibacterianos/farmacología , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/metabolismo , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata , Células Madre Mesenquimatosas/metabolismo , Animales , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/microbiología , Carga Bacteriana , Movimiento Celular , Enfermedad Crónica , Modelos Animales de Enfermedad , Perros , Farmacorresistencia Bacteriana Múltiple , Femenino , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Neutrófilos/metabolismo , Fagocitosis/efectos de los fármacos , Fagocitosis/inmunología , Cicatrización de Heridas
14.
Stem Cells Dev ; 26(4): 249-262, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27842458

RESUMEN

Mesenchymal stem cells (MSC) represent a readily accessible source of cells with potent immune modulatory activity. MSC can suppress ongoing inflammatory responses by suppressing T cell function, while fewer studies have examined the impact of MSC on dendritic cell (DC) function. The dog spontaneous disease model represents an important animal model with which to evaluate the safety and effectiveness of cellular therapy with MSC. This study evaluated the effects of canine MSC on the activation and maturation of canine monocyte-derived DC, as well as mechanisms underlying these effects. Adipose-derived canine MSC were cocultured with canine DC, and the MSC effects on DC maturation and activation were assessed by flow cytometry, cytokine ELISA, and confocal microscopy. We found that canine MSC significantly suppressed lipopolysaccharide (LPS)-stimulated upregulation of DC activation markers such as major histocompatibility class II (MHCII), CD86, and CD40. Furthermore, pretreatment of MSC with interferon gamma (IFNγ) augmented this suppressive activity. IFNγ-activated MSC also significantly reduced LPS-elicited DC secretion of tumor necrosis factor alpha without reducing secretion of interleukin-10. The suppressive effect of IFNγ-treated MSC on LPS-induced DC activation was mediated by soluble factors secreted by both MSC and DC. Pathways of DC functional suppression included programmed death ligand-1 expression and secretion of nitrous oxide, prostaglandin E2, and adenosine by activated MSC. Coculture of DC with IFNγ-treated MSC maintained DC in an immature state and prolonged DC antigen uptake during LPS maturation stimulus. Taken together, canine MSC are capable of potently suppressing DC function in a potentially inflammatory microenvironment through several separate immunological pathways and confirm the potential for immune therapy with MSC in canine immune-mediated disease models.


Asunto(s)
Diferenciación Celular , Citocinas/farmacología , Células Dendríticas/citología , Células Dendríticas/metabolismo , Mediadores de Inflamación/farmacología , Células Madre Mesenquimatosas/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Antígenos/metabolismo , Antígenos CD/metabolismo , Diferenciación Celular/efectos de los fármacos , Técnicas de Cocultivo , Células Dendríticas/efectos de los fármacos , Perros , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Antígenos de Histocompatibilidad Clase II/metabolismo , Inmunomodulación/efectos de los fármacos , Terapia de Inmunosupresión , Interferón gamma/farmacología , Lipopolisacáridos/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Monocitos/citología , Fenotipo , Piel/citología , Solubilidad , Factor de Necrosis Tumoral alfa/metabolismo
15.
J Immunol ; 195(8): 3890-900, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26371254

RESUMEN

Cytokines are key regulators of adequate immune responses to infection with Mycobacterium tuberculosis. We demonstrate that the p110δ catalytic subunit of PI3K acts as a downstream effector of the TLR family member RP105 (CD180) in promoting mycobacteria-induced cytokine production by macrophages. Our data show that the significantly reduced release of TNF and IL-6 by RP105(-/-) macrophages during mycobacterial infection was not accompanied by diminished mRNA or protein expression. Mycobacteria induced comparable activation of NF-κB and p38 MAPK signaling in wild-type (WT) and RP105(-/-) macrophages. In contrast, mycobacteria-induced phosphorylation of Akt was abrogated in RP105(-/-) macrophages. The p110δ-specific inhibitor, Cal-101, and small interfering RNA-mediated knockdown of p110δ diminished mycobacteria-induced TNF secretion by WT but not RP105(-/-) macrophages. Such interference with p110δ activity led to reduced surface-expressed TNF in WT but not RP105(-/-) macrophages, while leaving TNF mRNA and protein expression unaffected. Activity of Bruton's tyrosine kinase was required for RP105-mediated activation of Akt phosphorylation and TNF release by mycobacteria-infected macrophages. These data unveil a novel innate immune signaling axis that orchestrates key cytokine responses of macrophages and provide molecular insight into the functions of RP105 as an innate immune receptor for mycobacteria.


Asunto(s)
Antígenos CD/inmunología , Fosfatidilinositol 3-Quinasa Clase I/inmunología , Sistema de Señalización de MAP Quinasas/inmunología , Mycobacterium tuberculosis/inmunología , Tuberculosis/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Animales , Antígenos CD/genética , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasa Clase I/genética , Inhibidores Enzimáticos/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Ratones , Ratones Noqueados , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , Transporte de Proteínas/inmunología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/inmunología , Purinas/farmacología , Quinazolinonas/farmacología , Tuberculosis/genética , Tuberculosis/patología , Factor de Necrosis Tumoral alfa/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/inmunología
16.
Methods Mol Biol ; 1285: 47-75, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25779310

RESUMEN

The extraction and isolation of native bacterial proteins continue to be valuable technical pursuits in order to understand bacterial physiology, screen for virulence determinants, and describe antigens. In this chapter, methods for the manipulation of whole mycobacterial cells are described in detail. Specifically, the concentration of spent culture filtrate media is described in order to permit separation of soluble, secreted proteins; several discrete separation techniques, including precipitation of protein mixtures with ammonium sulfate and separation of proteins by hydrophobic chromatography are also provided. Similarly, the generation of whole cell lysate and facile separation of lysate into subcellular fractions to afford cell wall, cell membrane, and cytosol enriched proteins is described. Due to the hydrophobic nature of cell wall and cell membrane proteins, several extraction protocols to resolve protein subsets (such as extraction with urea and SDS) are also provided, as well as a separation technique (isoelectric focusing) that can be applied to separate hydrophobic proteins. Lastly, two commonly used analytical techniques, in-gel digestion of proteins for LC-MS and analysis of intact proteins by MALDI-ToF MS, are provided for rapid analysis of discrete proteins within subcellular or chromatographic fractions. While these methods were optimized for the manipulation of Mycobacterium tuberculosis cells, they have been successfully applied to extract and isolate Mycobacterium leprae, Mycobacterium ulcerans, and Mycobacterium avium proteins. In addition, a number of these methods may be applied to extract and analyze mycobacterial proteins from cell lines and host derived samples.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Fraccionamiento Celular , Mycobacterium tuberculosis/metabolismo , Proteínas Bacterianas/aislamiento & purificación , Fraccionamiento Celular/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Focalización Isoeléctrica , Espectrometría de Masas , Solubilidad , Fracciones Subcelulares
17.
Mem. Inst. Oswaldo Cruz ; 107(supl.1): 79-89, Dec. 2012. ilus, tab
Artículo en Inglés | LILACS | ID: lil-659745

RESUMEN

Although leprosy is curable with drug treatment, the identification of biomarkers of infection, disease progression and treatment efficacy would greatly help to reduce the overall prevalence of the disease. Reliable biomarkers would also reduce the incidence of grade-2 disability by ensuring that those who are most at risk are diagnosed and treated early or offered repeated treatments in the case of relapse. In this study, we examined the reactivity of sera from lepromatous and tuberculoid leprosy patients (LPs) against a panel of 12 recombinant Mycobacterium leprae proteins and found that six proteins were strongly recognised by multibacillary (MB) patients, while only three were consistently recognised by paucibacillary patients. To better understand the dynamics of patient antibody responses during and after drug therapy, we measured antibody titres to four recombinant proteins, phenolic glycolipid-I and lipoarabinomannan at baseline and up to two years after diagnosis to investigate the temporal changes in the antibody titres. Reactivity patterns to individual antigens and decreases in antibody titres were patient-specific. Antibody titres to proteins declined more rapidly vs. those to carbohydrate and glycolipid antigens. Compared to baseline values, increases in antibody titres were observed during reactional episodes in one individual. Additionally, antibody responses against a subset of antigens that provided a good prognostic indicator of disease progression were analysed in 51 household contacts of MB index cases for up to two years. Although the majority of these contacts showed no change or exhibited decreases in antibody titres, seven individuals developed higher titres towards one or more of these antigens and one individual with progressively higher titres was diagnosed with borderline lepromatous leprosy 19 months after enrolment. The results of this study indicate that antibody titres to specific M. leprae antigens can be used to monitor treatment efficacy in LPs and assess disease progression in those most at risk for developing this disease.


Asunto(s)
Adolescente , Adulto , Anciano , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/sangre , Proteínas Bacterianas/sangre , Glucolípidos/sangre , Lepra/diagnóstico , Lipopolisacáridos/sangre , Mycobacterium leprae/inmunología , Biomarcadores/sangre , Evaluación de la Discapacidad , Progresión de la Enfermedad , Ensayo de Inmunoadsorción Enzimática , Composición Familiar , Lepra/sangre , Proteínas Recombinantes/sangre , Índice de Severidad de la Enfermedad
18.
Mem Inst Oswaldo Cruz ; 107 Suppl 1: 79-89, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23283458

RESUMEN

Although leprosy is curable with drug treatment, the identification of biomarkers of infection, disease progression and treatment efficacy would greatly help to reduce the overall prevalence of the disease. Reliable biomarkers would also reduce the incidence of grade-2 disability by ensuring that those who are most at risk are diagnosed and treated early or offered repeated treatments in the case of relapse. In this study, we examined the reactivity of sera from lepromatous and tuberculoid leprosy patients (LPs) against a panel of 12 recombinant Mycobacterium leprae proteins and found that six proteins were strongly recognised by multibacillary (MB) patients, while only three were consistently recognised by paucibacillary patients. To better understand the dynamics of patient antibody responses during and after drug therapy, we measured antibody titres to four recombinant proteins, phenolic glycolipid-I and lipoarabinomannan at baseline and up to two years after diagnosis to investigate the temporal changes in the antibody titres. Reactivity patterns to individual antigens and decreases in antibody titres were patient-specific. Antibody titres to proteins declined more rapidly vs. those to carbohydrate and glycolipid antigens. Compared to baseline values, increases in antibody titres were observed during reactional episodes in one individual. Additionally, antibody responses against a subset of antigens that provided a good prognostic indicator of disease progression were analysed in 51 household contacts of MB index cases for up to two years. Although the majority of these contacts showed no change or exhibited decreases in antibody titres, seven individuals developed higher titres towards one or more of these antigens and one individual with progressively higher titres was diagnosed with borderline lepromatous leprosy 19 months after enrolment. The results of this study indicate that antibody titres to specific M. leprae antigens can be used to monitor treatment efficacy in LPs and assess disease progression in those most at risk for developing this disease.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/sangre , Proteínas Bacterianas/sangre , Glucolípidos/sangre , Lepra/diagnóstico , Lipopolisacáridos/sangre , Mycobacterium leprae/inmunología , Adolescente , Adulto , Anciano , Biomarcadores/sangre , Niño , Evaluación de la Discapacidad , Progresión de la Enfermedad , Ensayo de Inmunoadsorción Enzimática , Composición Familiar , Femenino , Humanos , Lepra/sangre , Masculino , Persona de Mediana Edad , Proteínas Recombinantes/sangre , Índice de Severidad de la Enfermedad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...