Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genome Biol Evol ; 15(10)2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37616576

RESUMEN

The mechanisms initiating apoptotic programmed cell death in diverse eukaryotes are very similar. Basically, the mitochondrial permeability transition activates apoptotic proteases, DNases, and flavoproteins such as apoptosis-inducing factors (AIFs). According to the hypothesis of the endosymbiotic origin of apoptosis, these mechanisms evolved during mitochondrial domestication. Various phylogenetic analyses, including ours, have suggested that apoptotic factors were eubacterial protomitochondrial toxins used for killing protoeukaryotic hosts. Here, we tested whether the function of yeast Saccharomyces cerevisiae apoptotic proteases (metacaspases Mca1 and Nma111), DNase Nuc1, and flavoprotein Ndi1 can be substituted with orthologs from remotely related eukaryotes such as plants, protists, and eubacteria. We found that orthologs of remotely related eukaryotic and even eubacterial proteins can initiate apoptosis in yeast when triggered by chemical stresses. This observation suggests that apoptotic mechanisms have been maintained since mitochondrial domestication, which occurred approximately 1,800 Mya. Additionally, it supports the hypothesis that some of these apoptotic factors could be modified eubacterial toxins.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Filogenia , Saccharomyces cerevisiae/metabolismo , Domesticación , Apoptosis , Péptido Hidrolasas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Endonucleasas , Exonucleasas/metabolismo
2.
BMC Ecol Evol ; 21(1): 99, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34039270

RESUMEN

BACKGROUND: The impact of genetic interaction networks on evolution is a fundamental issue. Previous studies have demonstrated that the topology of the network is determined by the properties of the cellular machinery. Functionally related genes frequently interact with one another, and they establish modules, e.g., modules of protein complexes and biochemical pathways. In this study, we experimentally tested the hypothesis that compensatory evolutionary modifications, such as mutations and transcriptional changes, occur frequently in genes from perturbed modules of interacting genes. RESULTS: Using Saccharomyces cerevisiae haploid deletion mutants as a model, we investigated two modules lacking COG7 or NUP133, which are evolutionarily conserved genes with many interactions. We performed laboratory evolution experiments with these strains in two genetic backgrounds (with or without additional deletion of MSH2), subjecting them to continuous culture in a non-limiting minimal medium. Next, the evolved yeast populations were characterized through whole-genome sequencing and transcriptome analyses. No obvious compensatory changes resulting from inactivation of genes already included in modules were identified. The supposedly compensatory inactivation of genes in the evolved strains was only rarely observed to be in accordance with the established fitness effect of the genetic interaction network. In fact, a substantial majority of the gene inactivations were predicted to be neutral in the experimental conditions used to determine the interaction network. Similarly, transcriptome changes during continuous culture mostly signified adaptation to growth conditions rather than compensation of the absence of the COG7, NUP133 or MSH2 genes. However, we noticed that for genes whose inactivation was deleterious an upregulation of transcription was more common than downregulation. CONCLUSIONS: Our findings demonstrate that the genetic interactions and the modular structure of the network described by others have very limited effects on the evolutionary trajectory following gene deletion of module elements in our experimental conditions and has no significant impact on short-term compensatory evolution. However, we observed likely compensatory evolution in functionally related (albeit non-interacting) genes.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Epistasis Genética , Eliminación de Gen , Redes Reguladoras de Genes , Mutación , Proteínas de Complejo Poro Nuclear , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
4.
Genes (Basel) ; 11(12)2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33261040

RESUMEN

Continuous cultures assure the invariability of environmental conditions and the metabolic state of cultured microorganisms, whereas batch-cultured cells undergo constant changes in nutrients availability. For that reason, continuous culture is sometimes employed in the whole transcriptome, whole proteome, or whole metabolome studies. However, the typical method for establishing uniform growth of a cell population, i.e., by limited chemostat, results in the enrichment of the cell population gene pool with mutations adaptive for starvation conditions. These adaptive changes can skew the results of large-scale studies. It is commonly assumed that these adaptations reflect changes in the genome, and this assumption has been confirmed experimentally in rare cases. Here we show that in a population of budding yeast cells grown for over 200 generations in continuous culture in non-limiting minimal medium and therefore not subject to selection pressure, remodeling of transcriptome occurs, but not as a result of the accumulation of adaptive mutations. The observed changes indicate a shift in the metabolic balance towards catabolism, a decrease in ribosome biogenesis, a decrease in general stress alertness, reorganization of the cell wall, and transactions occurring at the cell periphery. These adaptive changes signify the acquisition of a new lifestyle in a stable nonstressful environment. The absence of underlying adaptive mutations suggests these changes may be regulated by another mechanism.


Asunto(s)
Adaptación Fisiológica/genética , Medios de Cultivo/farmacología , Micología/métodos , Saccharomyces cerevisiae/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Metabolismo , Mutación , Sistemas de Lectura Abierta , ARN de Hongos/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Estrés Fisiológico/genética , Factores de Tiempo , Factores de Transcripción/metabolismo , Transcriptoma
5.
J Cell Sci ; 131(24)2018 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30463853

RESUMEN

The protein Swi6 in Saccharomyces cerevisiae is a cofactor in two complexes that regulate the transcription of the genes controlling the G1/S transition. It also ensures proper oxidative and cell wall stress responses. Previously, we found that Swi6 was crucial for the survival of genotoxic stress. Here, we show that a lack of Swi6 causes replication stress leading to double-strand break (DSB) formation, inefficient DNA repair and DNA content alterations, resulting in high cell mortality. Comparative genome hybridization experiments revealed that there was a random genome rearrangement in swi6Δ cells, whereas in diploid swi6Δ/swi6Δ cells, chromosome V is duplicated. SWI4 and PAB1, which are located on chromosome V and are known multicopy suppressors of swi6Δ phenotypes, partially reverse swi6Δ genome instability when overexpressed. Another gene on chromosome V, RAD51, also supports swi6Δ survival, but at a high cost; Rad51-dependent illegitimate recombination in swi6Δ cells appears to connect DSBs, leading to genome rearrangement and preventing cell death.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Reparación del ADN/genética , Inestabilidad Genómica/genética , Recombinasa Rad51/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Roturas del ADN de Doble Cadena , Daño del ADN/genética , ADN Helicasas/genética , Proteínas de Unión al ADN/metabolismo , Recombinación Genética/genética , Saccharomyces cerevisiae/metabolismo
6.
Oncotarget ; 8(15): 24988-25004, 2017 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-28212567

RESUMEN

Ribosomal RNA-encoding genes (rDNA) are the most abundant genes in eukaryotic genomes. To meet the high demand for rRNA, rDNA genes are present in multiple tandem repeats clustered on a single or several chromosomes and are vastly transcribed. To facilitate intensive transcription and prevent rDNA destabilization, the rDNA-encoding portion of the chromosome is confined in the nucleolus. However, the rDNA region is susceptible to recombination and DNA damage, accumulating mutations, rearrangements and atypical DNA structures. Various sophisticated techniques have been applied to detect these abnormalities. Here, we present a simple method for the evaluation of the activity and integrity of an rDNA region called a "DNA cloud assay". We verified the efficacy of this method using yeast mutants lacking genes important for nucleolus function and maintenance (RAD52, SGS1, RRM3, PIF1, FOB1 and RPA12). The DNA cloud assay permits the evaluation of nucleolus status and is compatible with downstream analyses, such as the chromosome comet assay to identify DNA structures present in the cloud and mass spectrometry of agarose squeezed proteins (ASPIC-MS) to detect nucleolar DNA-bound proteins, including Las17, the homolog of human Wiskott-Aldrich Syndrome Protein (WASP).


Asunto(s)
Cromatina/metabolismo , ADN Ribosómico/genética , Cromatina/química , ADN Ribosómico/química , Humanos , Espectrometría de Masas/métodos , Sefarosa
7.
Cell Div ; 12: 1, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28077952

RESUMEN

BACKGROUND: Correct chromosome segregation depends on the sister chromatid cohesion complex. The essential, evolutionarily conserved regulatory protein Irr1/Scc3, is responsible for the complex loading onto DNA and for its removal. We found that, unexpectedly, Irr1 is present not only in the nucleus but also in the cytoplasm. RESULTS: We show that Irr1 protein is enriched in the cytoplasm upon arrest of yeast cells in G1 phase following nitrogen starvation, diauxic shift or α-factor action, and also during normal cell cycle. Despite the presence of numerous Crm1-dependent export signals, the cytoplasmic pool of Irr1 is not derived through export from the nucleus but instead is simply retained in the cytoplasm. Cytoplasmic Irr1 interacts with the Imi1 protein implicated in glutathione homeostasis and mitochondrial integrity. CONCLUSIONS: Besides regulation of the sister chromatid cohesion complex in the nucleus Irr1 appears to have an additional role in the cytoplasm, possibly through interaction with the cytoplasmic protein Imi1.

8.
FEMS Yeast Res ; 15(6)2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26091838

RESUMEN

Glutathione homeostasis is crucial for cell functioning. We describe a novel Imi1 protein of Saccharomyces cerevisiae affecting mitochondrial integrity and involved in controlling glutathione level. Imi1 is cytoplasmic and, except for its N-terminal Flo11 domain, has a distinct solenoid structure. A lack of Imi1 leads to mitochondrial lesions comprising aberrant morphology of cristae and multifarious mtDNA rearrangements and impaired respiration. The mitochondrial malfunctioning is coupled to significantly decrease the level of intracellular reduced glutathione without affecting oxidized glutathione, which decreases the reduced/oxidized glutathione ratio. These defects are accompanied by decreased cadmium sensitivity and increased phytochelatin-2 level.


Asunto(s)
Glutatión/metabolismo , Homeostasis , Mitocondrias/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Cadmio/toxicidad , Metabolismo Energético , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Oxidación-Reducción , Fitoquelatinas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética
9.
Acta Biochim Pol ; 62(2): 215-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25979289

RESUMEN

Stromalins are evolutionarily conserved multifunctional proteins with the best known function in sister chromatid cohesion. Human SA2 stromalin, likely involved in the establishment of cohesion, contains numerous potential nuclear localization (NLS) and nuclear export signals (NES). Previously we have found that the C-terminus of SA2 contains NLS(s) functional in human cells. However, the identity of this signal remained unclear since three NLS-like sequences are present in that region. Here we analyzed the functionality of these putative signals by expressing GFP-tagged C-terminal part of SA2 or its fragments in a human cell line and in the yeast Saccharomyces cerevisiae. We found that in human cells the nuclear import is dependent on a unique compound di- or tripartite signal containing unusually long linkers between clusters of basic amino acids. Upon expression of the same SA2 fragment in yeast this signal is also functional and can be easily studied in more detail.


Asunto(s)
Antígenos Nucleares/metabolismo , Señales de Localización Nuclear , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas de Ciclo Celular , Núcleo Celular/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Carioferinas/metabolismo , Datos de Secuencia Molecular , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Proteína Exportina 1
10.
Acta Biochim Pol ; 60(2): 233-8, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23730682

RESUMEN

The evolutionarily conserved proteins forming sister chromatid cohesion complex are also involved in the regulation of gene transcription. The participation of SA2p (mammalian ortholog of yeast Irr1p, associated with the core of the complex) in the regulation of transcription is already described. Here we analyzed microarray profiles of gene expression of a Saccharomyces cerevisiae irr1-1/IRR1 heterozygous diploid strain. We report that expression of 33 genes is affected by the presence of the mutated Irr1-1p and identify those genes. This supports the suggested role of Irr1p in the regulation of transcription. We also indicate that Irr1p may interact with elements of transcriptional coactivator Mediator.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Complejo Mediador/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética/efectos de los fármacos , Cohesinas
11.
PLoS One ; 7(6): e38740, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22715410

RESUMEN

BACKGROUND: Human SA/STAG proteins, homologues of the yeast Irr1/Scc3 cohesin, are the least studied constituents of the sister chromatid cohesion complex crucial for proper chromosome segregation. The two SA paralogues, SA1 and SA2, show some specificity towards the chromosome region they stabilize, and SA2, but not SA1, has been shown to participate in transcriptional regulation as well. The molecular basis of this functional divergence is unknown. METHODOLOGY/PRINCIPAL FINDINGS: In silico analysis indicates numerous putative nuclear localization (NLS) and export (NES) signals in the SA proteins, suggesting the possibility of their nucleocytoplasmic shuttling. We studied the functionality of those putative signals by expressing fluorescently tagged SA1 and SA2 in the yeast Saccharomyces cerevisiae. Only the N-terminal NLS turned out to be functional in SA1. In contrast, the SA2 protein has at least two functional NLS and also two functional NES. Depending on the balance between these opposing signals, SA2 resides in the nucleus or is distributed throughout the cell. Validation of the above conclusions in HeLa cells confirmed that the same N-terminal NLS of SA1 is functional in those cells. In contrast, in SA2 the principal NLS functioning in HeLa cells is different from that identified in yeast and is localized to the C-terminus. CONCLUSIONS/SIGNIFICANCE: This is the first demonstration of the possibility of non-nuclear localization of an SA protein. The reported difference in the organization between the two SA homologues may also be relevant to their partially divergent functions. The mechanisms determining subcellular localization of cohesins are only partially conserved between yeast and human cells.


Asunto(s)
Antígenos Nucleares/biosíntesis , Señales de Exportación Nuclear/fisiología , Señales de Localización Nuclear/biosíntesis , Proteínas Nucleares/biosíntesis , Saccharomyces cerevisiae/metabolismo , Antígenos Nucleares/genética , Proteínas de Ciclo Celular , Humanos , Señales de Localización Nuclear/genética , Proteínas Nucleares/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética
12.
Postepy Biochem ; 56(1): 41-54, 2010.
Artículo en Polaco | MEDLINE | ID: mdl-20499680

RESUMEN

Faithful chromosome segregation in mitosis and meiosis requires the presence of the sister chromatid cohesion complex. The complex, which was initially identified and characterized in yeast Saccharomyces cerevisiae, and subsequently detected in other Eukaryota, is composed of four evolutionarily conserved core subunits (cohesins) Smc1, Smc3, Scc1/Mcd1 and Irr1/Scc3. Apart from the core proteins, accurate segregation requires also elements necessary for the deposition of cohesins and for the establishment and the regulation of cohesion. There are several models of cohesin structure and functioning. The oldest and the most popular ring model is currently replaced by the handcuff model. Regulation of cohesion is not very well established but the regulatory role of the Ecol, Irr1--STAG2, Pds5 and Wap1/Rad61 proteins seems undoubted. Meiotic cohesion differs from cohesion in mitosis and requires the specific Rec8 and Sgol proteins. Apart from the main function--the participation in chromosome segregation--cohesins are also involved in the regulation of transcription, DNA double-strand break repair and chromosome morphogenesis. Here we characterize elements of the complex, and describe models of the complex functioning. Moreover, we discuss the regulation of sister chromatid cohesion in mitosis and meiosis and, additionally, we describe atypical functions of cohesins.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Eucariontes/fisiología , Intercambio de Cromátides Hermanas/fisiología , Segregación Cromosómica/fisiología , Reparación del ADN/fisiología , Meiosis/fisiología , Mitosis/fisiología , Modelos Moleculares , Transcripción Genética/fisiología , Cohesinas
13.
Eur J Cell Biol ; 87(10): 831-44, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18617290

RESUMEN

The sister chromatid cohesion complex of Saccharomyces cerevisiae includes chromosomal ATPases Smc1p and Smc3p, the kleisin Mcd1p/Scc1p, and Irr1p/Scc3p, the least studied component. We have created an irr1-1 mutation (F658G substitution) which is lethal in the haploid and semi-dominant in the heterozygous diploid irr1-1/IRR1. The mutated Irr1-1 protein is present in the nucleus, its level is similar to that of wild-type Irr1p/Scc3p and it is able to interact with chromosomes. The irr1-1/IRR1 diploid exhibits mitotic and meiotic chromosome segregation defects, irregularities in mitotic divisions and is severely affected in meiosis. These defects are gene-dosage dependent, and experiments with synchronous cultures suggest that they may result from the malfunctioning of the spindle assembly checkpoint. The partial structure of Irr1p/Scc3p was predicted and the F658G substitution was found to induce marked changes in the general shape of the predicted protein. Nevertheless, the mutant protein retains its ability to interact with Scc1p, another component of the cohesin complex, as shown by coimmunoprecipitation.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/química , Cromátides/genética , Segregación Cromosómica/genética , Cromosomas Fúngicos , Diploidia , Meiosis/genética , Mitosis/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Nocodazol/farmacología , Proteínas de Saccharomyces cerevisiae/química , Huso Acromático/efectos de los fármacos , Huso Acromático/genética
14.
Yeast ; 24(10): 871-82, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17640084

RESUMEN

Murine DNA methyltransferases Dnmt1 and Dnmt3a were expressed in the yeast Saccharomyces cerevisiae. Adjustment to yeast preferences of the nucleotide sequences upstream and downstream of the translation initiation sites of both cDNAs was needed to obtain significant levels of the methyltransferases. Both proteins were correctly localized to the nucleus and their presence had no measurable influence on the functioning of yeast cells. Both Dnmt1 and Dnmt3a expressed in yeast cells were enzymatically active in vitro, and in vivo in the genomic DNA of the transgenic S. cerevisiae ca. 0.06% and 0.4%, respectively, of cytosines became methylated. This level of DNA methylation is about 100- to 10-fold less than that observed in mammalian cells. The constructed system may be used to investigate the in vivo specificity of individual mammalian DNA methyltransferases and to search for additional factors needed to allow more efficient in vivo methylation of chromatin-contained DNA and to study their mechanism of action.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Saccharomyces cerevisiae/genética , Animales , Secuencia de Bases , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , ADN Metiltransferasa 3A , Ratones , Datos de Secuencia Molecular
15.
Cell Struct Funct ; 32(1): 1-7, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17229992

RESUMEN

The sister chromatid cohesion complex of Saccharomyces cerevisiae is composed of proteins termed cohesins. The complex forms a ring structure that entraps sister DNAs, probably following replication. The mechanism of cohesion is universal and the proteins participating in this process are evolutionarily highly conserved. We investigated the Irr1p/Scc3p cohesin subunit, an under-studied protein. We show that the presence of a mutated copy of IRR1 gene, encoding the F658G substitution in Irr1p, changes the sensitivity of the heterozygous irr1-1/IRR1 diploid to cell wall-affecting compounds. Microscopic images indicate that chitin distribution in the mutant cell wall is affected, although the biochemical composition of the cell wall is not drastically changed. This observation suggests that irr1-1 mutation in heterozygous state may influence the cell wall integrity and indicates a possible link between mechanisms regulating the cell wall biosynthesis, nuclear migration and chromosome segregation.


Asunto(s)
Proteínas de Ciclo Celular/genética , Pared Celular/fisiología , Proteínas Cromosómicas no Histona/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Proteínas de Ciclo Celular/fisiología , División Celular/fisiología , Núcleo Celular/fisiología , Quitina/genética , Quitina/fisiología , Cromátides/genética , Proteínas Cromosómicas no Histona/fisiología , Segregación Cromosómica/fisiología , Cromosomas Fúngicos/genética , ADN de Hongos/genética , Regulación Fúngica de la Expresión Génica , Proteínas Nucleares/fisiología , Mutación Puntual , Subunidades de Proteína/genética , Subunidades de Proteína/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Transducción de Señal/fisiología , Cohesinas
16.
Biochem J ; 390(Pt 3): 655-64, 2005 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-15926887

RESUMEN

The mammalian chloride channel ClC-2 is a member of the CLC voltage-gated chloride channels family. This broadly expressed protein shows diverse cellular locations and despite numerous studies, its precise function is poorly understood. Disruption of ClC-2-encoding gene in mouse leads to retinal and testicular degeneration and mutations in CLC2 (gene encoding the ClC-2 channel) are associated with idiopathic generalized epilepsies. ClC-2 may also be responsible for Cl- transport in mouse salivary glands. The only CLC homologue of the yeast Saccharomyces cerevisiae, Gef1p, exhibits CLC activity. We expressed the mammalian ClC-2 protein in S. cerevisiae devoid of Gef1p in an attempt to identify yeast proteins influencing the functioning of ClC-2. The presence of such proteins in yeast could indicate the existence of their homologues in mammalian cells and would greatly aid their identification. Expression of ClC-2 in yeast required optimization of the sequence context of the AUG translation initiation codon. After obtaining an efficient translation, we found that rat ClC-2 cannot directly substitute for yeast Gef1p. Functional substitution for Gef1p was, however, achieved in the presence of an increased level of intact or C-terminally truncated yeast Kha1 protein. Based on the deduced amino acid sequence, the Kha1 protein can be classified as a Na+/H+ transporter since it has a large N-terminal domain similar to the family of NHEs (Na+/H+ exchangers). This suggests that the Kha1p may take part in the regulation of intracellular cation homoeostasis and pH control. We have established that Kha1p is localized in the same cellular compartment as Gef1p and yeast-expressed ClC-2: the Golgi apparatus. We propose that Kha1p may aid ClC-2-dependent suppression of the Deltagef1-associated growth defects by keeping the Golgi apparatus pH in a range suitable for ClC-2 activity. The approach employed in the present study may be of general applicability to the characterization of poorly understood proteins by their functional expression in yeast.


Asunto(s)
Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Antiportadores de Potasio-Hidrógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Animales , Canales de Cloruro CLC-2 , Regulación Fúngica de la Expresión Génica , Aparato de Golgi/metabolismo , Fenotipo , Antiportadores de Potasio-Hidrógeno/genética , Transporte de Proteínas , Ratas , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
17.
Exp Cell Res ; 294(2): 592-602, 2004 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15023545

RESUMEN

We present the characteristics of the Csm1 (Spo86) protein of Saccharomyces cerevisiae that are important for meiotic division. The level of Csm1p does not change throughout the cell cycle, but this protein is absent in mature spores. Deletion of CSM1 causes incorrect spore formation and meiotic chromosome missegregation together with increased sensitivity of vegetative cells to benomyl and manganese. In a two-hybrid analysis with Csm1p as bait, we detected interactions with three members of the Mcm2-7 family of proteins involved in the initiation of DNA replication, and with Clf1p also implicated in replication. The Csm1p-Mcm3, Mcm5 and Mcm7p interactions were confirmed by co-immunoprecipitation. Three other interacting proteins, Mgs1p, Ulp2, and Plp2, participate in chromosome assembling and segregation, whereas the function of two others has not been established. Genetic experiments showed that the two-hybrid isolates MGS1, CLF1, MCM3, 5, 7 (CDC47), and YDL089w, when overexpressed, partially suppress the csm1Delta/csm1Delta sporulation defect. We propose that, besides its other functions, Csm1p may be involved in premeiotic DNA replication.


Asunto(s)
Proteínas de Ciclo Celular/genética , Segregación Cromosómica/genética , Replicación del ADN/genética , Meiosis/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Endopeptidasas/genética , Endopeptidasas/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Reproducción/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Esporas Fúngicas/genética , Esporas Fúngicas/metabolismo , Técnicas del Sistema de Dos Híbridos
18.
Acta Biochim Pol ; 50(3): 883-90, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14515169

RESUMEN

The Saccharomyces cerevisiae spindle pole body (SPB) consists of numerous proteins forming the outer, inner and central plaques. The protein Cnm67 is an important component of the outer plaque. The C-terminus of this protein contains a determinant important for its SPB localization. We identified a protein encoded by YOR129c which interacts with this C-terminus in the two-hybrid system. YOR129c and CNM67 exhibit weak genetic interaction. The double deletion strain yor129cdelta cnm67delta exhibits moderately increased resistance to 0.1M LiCl and hygromycin B compared with the cnm67delta single mutant. We propose that the YOR129c protein is an accessory factor associated with the cytoplasmic face of SPB and plays a role in cation homeostasis and/or multidrug resistance.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Membrana Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Huso Acromático/metabolismo , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Mutagénesis , Membrana Nuclear/genética , Unión Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Huso Acromático/genética , Técnicas del Sistema de Dos Híbridos
19.
Acta Biochim Pol ; 49(2): 421-5, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12362983

RESUMEN

The protein encoded by the IRR1/SCC3 gene is an element of the cohesin complex of Saccharomyces cerevisiae, responsible for establishing and maintaining sister chromatid cohesion during mitotic cell division. We noticed previously that lowering the level of expression of IRR1/SCC3 affects colony formation on solid support. Here we describe two dosage suppressors (IST2, NOG2) overcoming the inability to form colonies of an Irr1p-deficient strain. Ist2 is probably involved in osmotolerance, Nog2p is a putative GTPase required for 60S ribosomal subunit maturation, but may also participate in mRNA splicing.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Supresión Genética/genética , Adhesión Celular , Proteínas de Ciclo Celular , GTP Fosfohidrolasas , Genes Fúngicos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/citología , Transcripción Genética
20.
Yeast ; 19(15): 1323-33, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12402242

RESUMEN

Proteins involved in chromosome segregation during mitosis are likely to participate in other cell cycle-coordinated processes. Using a two-hybrid screen we identified a novel nuclear protein, Lin1, interacting with Irr1p/Scc3p, a component of the cohesin complex. The second round of two-hybrid assay with Lin1p as the bait resulted in the identification of six proteins: Prp8, Slx5, Siz2, Wss1, Rfc1 and YIL149w. These proteins have previously been shown to participate in mRNA splicing, DNA replication, chromosome condensation, chromatid separation and alternative cohesion. We propose that Lin1p may constitute a link among these processes.


Asunto(s)
Segregación Cromosómica , Replicación del ADN , Proteínas Nucleares/metabolismo , Empalme del ARN , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular , Cromátides , Proteínas Cromosómicas no Histona , Proteínas Fúngicas/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Proteínas Nucleares/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Intercambio de Cromátides Hermanas , Técnicas del Sistema de Dos Híbridos , Cohesinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...