Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurotoxicology ; 102: 68-80, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38599288

RESUMEN

Melamine-tainted products have been found in the market and raised issues about food safety. Recent studies done in rodents and humans demonstrated the toxicities of melamine, especially in causing kidney damage and bladder stone formation. However, very few studies assessed its behavior toxicity in organisms, including fish. Therefore, in this study, the researchers aim to determine whether sub-chronic exposure to melamine via oral and systematic administration could induce behavioral abnormality in zebrafish. After 14 days of systematic exposure to melamine at doses of 0.1 and 10 ppm levels, zebrafish were subjected to multiple behavioral assays. Results from both exposure routes showed that melamine indeed slightly increased fish locomotion and altered their exploratory behaviors in the novel tank assay. Furthermore, tightened shoaling formation was also displayed by the treated fish in the waterborne exposure group. However, melamine exposure did not cause any obvious alterations in fish behaviors during other behavioral tests. In addition, in comparison with previously published data on the behavior toxicities of several solvents in zebrafish, our phenomic analysis suggests the relatively low behavior toxicities of melamine via either systematic exposure or oral administration to zebrafish compared to those solvents. Nevertheless, our data indicate that the potential neurotoxicity of chronic low-dose melamine should not be ignored.

2.
Biology (Basel) ; 13(2)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38392330

RESUMEN

Tacrolimus (FK506) is a common immunosuppressant that is used in organ transplantation. However, despite its importance in medical applications, it is prone to adverse side effects. While some studies have demonstrated its toxicities to humans and various animal models, very few studies have addressed this issue in aquatic organisms, especially zebrafish. Here, we assessed the adverse effects of acute and chronic exposure to tacrolimus in relatively low doses in zebrafish in both larval and adult stages, respectively. Based on the results, although tacrolimus did not cause any cardiotoxicity and respiratory toxicity toward zebrafish larvae, it affected their locomotor activity performance in light-dark locomotion tests. Meanwhile, tacrolimus was also found to slightly affect the behavior performance, shoaling formation, circadian rhythm locomotor activity, and color preference of adult zebrafish in a dose-dependent manner. In addition, alterations in the cognitive performance of the fish were also displayed by the treated fish, indicated by a loss of short-term memory. To help elucidate the toxicity mechanism of tacrolimus, molecular docking was conducted to calculate the strength of the binding interaction between tacrolimus to human FKBP12. The results showed a relatively normal binding affinity, indicating that this interaction might only partly contribute to the observed alterations. Nevertheless, the current research could help clinicians and researchers to further understand the toxicology of tacrolimus, especially to zebrafish, thus highlighting the importance of considering the toxicity of tacrolimus prior to its usage.

3.
Biomed Pharmacother ; 168: 115641, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37806085

RESUMEN

Recently, the usage of zebrafish for pain studies has increased in the past years, especially due to its robust pain-stimulated behaviors. Fin amputation has been demonstrated to induce a noxious response in zebrafish. However, based on the prior study, although lidocaine, the most used painkiller in zebrafish, has been shown to ameliorate amputated zebrafish behaviors, it still causes some prolonged effects. Therefore, alternative painkillers are always needed to improve the treatment quality of fin-amputated zebrafish. Here, the effects of several analgesics in recovering zebrafish behaviors post-fin amputation were evaluated. From the results, five painkillers were found to have potentially beneficial effects on amputated fish behaviors. Overall, these results aligned with their binding energy level to target proteins of COX-1 and COX-2. Later, based on their sub-chronic effects on zebrafish survivability, indomethacin, and diclofenac were further studied. This combination showed a prominent effect in recovering zebrafish behaviors when administered orally or through waterborne exposure, even with lower concentrations. Next, based on the ELISA in zebrafish brain tissue, although some changes were found in the treated group, no statistical differences were observed in most of the tested biomarkers. However, since heatmap clustering showed a similar pattern between biochemical and behavior endpoints, the minor changes in each biomarker may be sufficient in changing the fish behaviors.


Asunto(s)
Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo , Amputación Quirúrgica , Analgésicos , Dolor
4.
Toxics ; 11(8)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37624185

RESUMEN

In recent years, there have been efforts to utilize surface water as a power source, material, and food. However, these efforts are impeded due to the vast amounts of contaminants and emerging contaminants introduced by anthropogenic activities. Herbicides such as Glyphosate and Glufosinate are commonly known to contaminate surface water through agricultural industries. In contrast, some emerging contaminants, such as rare earth elements, have started to enter the surface water from the production and waste of electronic products. Duckweeds are angiosperms from the Lemnaceae family and have been used for toxicity tests in aquatic environments, mainly those from the genus Lemna, and have been approved by OECD. In this study, we used duckweed from the genus Wolffia, which is smaller and considered a good indicator of metal pollutants in the aquatic environment. The growth rate of duckweed is the most common endpoint in observing pollutant toxicity. In order to observe and mark the fronds automatically, we used StarDist, a machine learning-based tool. StarDist is available as a plugin in ImageJ, simplifying and assisting the counting process. Python also helps arrange, manage, and calculate the inhibition percentage after duckweeds are exposed to contaminants. The toxicity test results showed Dysprosium to be the most toxic, with an IC50 value of 14.6 ppm, and Samarium as the least toxic, with an IC50 value of 279.4 ppm. In summary, we can provide a workflow for automatic frond counting using StarDist integrated with ImageJ and Python to simplify the detection, counting, data management, and calculation process.

5.
Biology (Basel) ; 11(8)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36009871

RESUMEN

DeepLabCut (DLC) is a deep learning-based tool initially invented for markerless pose estimation in mammals. In this study, we explored the possibility of adopting this tool for conducting markerless cardiac physiology assessment in an important aquatic toxicology model of zebrafish (Danio rerio). Initially, high-definition videography was applied to capture heartbeat information at a frame rate of 30 frames per second (fps). Next, 20 videos from different individuals were used to perform convolutional neural network training by labeling the heart chamber (ventricle) with eight landmarks. Using Residual Network (ResNet) 152, a neural network with 152 convolutional neural network layers with 500,000 iterations, we successfully obtained a trained model that can track the heart chamber in a real-time manner. Later, we validated DLC performance with the previously published ImageJ Time Series Analysis (TSA) and Kymograph (KYM) methods. We also evaluated DLC performance by challenging experimental animals with ethanol and ponatinib to induce cardiac abnormality and heartbeat irregularity. The results showed that DLC is more accurate than the TSA method in several parameters tested. The DLC-trained model also detected the ventricle of zebrafish embryos even in the occurrence of heart abnormalities, such as pericardial edema. We believe that this tool is beneficial for research studies, especially for cardiac physiology assessment in zebrafish embryos.

6.
Animals (Basel) ; 12(13)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35804569

RESUMEN

Water fleas are an important lower invertebrate model that are usually used for ecotoxicity studies. Contrary to mammals, the heart of a water flea has a single chamber, which is relatively big in size and with fast-beating properties. Previous cardiac chamber volume measurement methods are primarily based on ImageJ manual counting at systolic and diastolic phases which suffer from low efficiency, high variation, and tedious operation. This study provides an automated and robust pipeline for cardiac chamber size estimation by a deep learning approach. Image segmentation analysis was performed using U-Net and Mask RCNN convolutional networks on several different species of water fleas such as Moina sp., Daphnia magna, and Daphnia pulex. The results show that Mask RCNN performs better than U-Net at the segmentation of water fleas' heart chamber in every parameter tested. The predictive model generated by Mask RCNN was further analyzed with the Cv2.fitEllipse function in OpenCV to perform a cardiac physiology assessment of Daphnia magna after challenging with the herbicide of Roundup. Significant increase in normalized stroke volume, cardiac output, and the shortening fraction was observed after Roundup exposure which suggests the possibility of heart chamber alteration after roundup exposure. Overall, the predictive Mask RCNN model established in this study provides a convenient and robust approach for cardiac chamber size and cardiac physiology measurement in water fleas for the first time. This innovative tool can offer many benefits to other research using water fleas for ecotoxicity studies.

7.
Int J Mol Sci ; 23(11)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35682689

RESUMEN

Previous methods to measure protozoan numbers mostly rely on manual counting, which suffers from high variation and poor efficiency. Although advanced counting devices are available, the specialized and usually expensive machinery precludes their prevalent utilization in the regular laboratory routine. In this study, we established the ImageJ-based workflow to quantify ciliate numbers in a high-throughput manner. We conducted Tetrahymena number measurement using five different methods: particle analyzer method (PAM), find maxima method (FMM), trainable WEKA segmentation method (TWS), watershed segmentation method (WSM) and StarDist method (SDM), and compared their results with the data obtained from the manual counting. Among the five methods tested, all of them could yield decent results, but the deep-learning-based SDM displayed the best performance for Tetrahymena cell counting. The optimized methods reported in this paper provide scientists with a convenient tool to perform cell counting for Tetrahymena ecotoxicity assessment.


Asunto(s)
Tetrahymena , Recuento de Células/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Laboratorios , Aprendizaje Automático
8.
Biomolecules ; 11(10)2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34680109

RESUMEN

Cardiac arrhythmia has been defined as one of the abnormal heart rhythm symptoms, which is a common problem dealt with by cardiologists. Zebrafish were established as a powerful animal model with a transparent body that enables optical observation to analyze cardiac morphology and cardiac rhythm regularity. Currently, research has observed heart-related parameters in zebrafish, which used different approaches, such as starting from the use of fluorescent transgenic zebrafish, different software, and different observation methods. In this study, we developed an innovative approach by using the OpenCV library to measure zebrafish larvae heart rate and rhythm. The program is designed in Python, with the feature of multiprocessing for simultaneous region-of-interest (ROI) detection, covering both the atrium and ventricle regions in the video, and was designed to be simple and user-friendly, having utility even for users who are unfamiliar with Python. Results were validated with our previously published method using ImageJ, which observes pixel changes. In summary, the results showed good consistency in heart rate-related parameters. In addition, the established method in this study also can be widely applied to other invertebrates (like Daphnia) for cardiac rhythm measurement.


Asunto(s)
Arritmias Cardíacas/diagnóstico por imagen , Atrios Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/diagnóstico por imagen , Pez Cebra/fisiología , Animales , Arritmias Cardíacas/fisiopatología , Modelos Animales de Enfermedad , Atrios Cardíacos/fisiopatología , Frecuencia Cardíaca/fisiología , Ventrículos Cardíacos/fisiopatología , Humanos , Procesamiento de Imagen Asistido por Computador , Larva/fisiología , Programas Informáticos , Grabación en Video
9.
Biomolecules ; 11(8)2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34439799

RESUMEN

Tail coiling is a reflection response in fish embryos that can be used as a model for neurotoxic analysis. The previous method to analyze fish tail coiling is largely based on third-party software. In this study, we aim to develop a simple and cost-effective method called TCMacro by using ImageJ macro to reduce the operational complexity. The basic principle of the current method is based on the dynamic change of pixel intensity in the region of interest (ROI). When the fish tail is moving, the average intensity is increasing. In time when the fish freeze, the peak of mean intensity is maintaining at a relatively low level. By using the optimized macro settings and excel VBA scripts, all the tail coiling measurement processes can be archived with few operation steps with high precision. Three major endpoints of tail coiling counts, tail coiling duration and tail coiling intervals can be obtained in batch. To validate this established method, we tested the potential neurotoxic activity of Tricaine (methanesulfonate, MS-222) and psychoactive compound of caffeine. Zebrafish embryos after Tricaine exposure displayed significantly less tail coiling activity in a dose-dependent manner, and were comparable to manual counting through the Wilcoxon test and Pearson correlation double validation. Zebrafish embryos after caffeine exposure displayed significantly high tail coiling activity. In conclusion, the TCMacro method presented in this study provides a simple and robust method that is able to measure the relative tail coiling activities in zebrafish embryos in a high-throughput manner.


Asunto(s)
Cafeína/farmacología , Diagnóstico por Imagen/métodos , Psicotrópicos/farmacología , Programas Informáticos , Cola (estructura animal)/efectos de los fármacos , Aminobenzoatos/farmacología , Animales , Benchmarking , Relación Dosis-Respuesta a Droga , Embrión no Mamífero , Ensayos Analíticos de Alto Rendimiento , Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , Movimiento/efectos de los fármacos , Movimiento/fisiología , Cola (estructura animal)/fisiología , Pez Cebra
10.
Antioxidants (Basel) ; 10(3)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807713

RESUMEN

As a nicotinoid neurotoxic insecticide, imidacloprid (IMI) works by disrupting nerve transmission via nicotinic acetylcholine receptor (nAChR). Although IMI is specifically targeting insects, nontarget animals such as the freshwater shrimp, Neocaridina denticulata, could also be affected, thus causing adverse effects on the aquatic environment. To investigate IMI toxicity on nontarget organisms like N. denticulata, their physiology (locomotor activity, heartbeat, and gill ventilation) and biochemical factors (oxidative stress, energy metabolism) after IMI exposure were examined. IMI exposure at various concentrations (0.03125, 0.0625, 0.125, 0.25, 0.5, and 1 ppm) to shrimp after 24, 48, 72 h led to dramatic reduction of locomotor activity even at low concentrations. Meanwhile, IMI exposure after 92 h caused reduced heartbeat and gill ventilation at high concentrations. Biochemical assays were performed to investigate oxidative stress and energy metabolism. Interestingly, locomotion immobilization and cardiac activity were rescued after acetylcholine administration. Through molecular docking, IMI demonstrated high binding affinity to nAChR. Thus, locomotor activity and heartbeat in shrimp after IMI exposure may be caused by nAChR blockade and not alterations caused by oxidative stress and energy metabolism. To summarize, N. denticulata serves as an excellent and sensitive aquatic invertebrate model to conduct pesticide toxicity assays that encompass physiologic and biochemical examinations.

11.
Biomedicines ; 8(9)2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32899676

RESUMEN

The heart is the most important muscular organ of the cardiovascular system, which pumps blood and circulates, supplying oxygen and nutrients to peripheral tissues. Zebrafish have been widely explored in cardiotoxicity research. For example, the zebrafish embryo has been used as a human heart model due to its body transparency, surviving several days without circulation, and facilitating mutant identification to recapitulate human diseases. On the other hand, adult zebrafish can exhibit the amazing regenerative heart muscle capacity, while adult mammalian hearts lack this potential. This review paper offers a brief description of the major methodologies used to detect zebrafish cardiac rhythm at both embryonic and adult stages. The dynamic pixel change method was mostly performed for the embryonic stage. Other techniques, such as kymography, laser confocal microscopy, artificial intelligence, and electrocardiography (ECG) have also been applied to study heartbeat in zebrafish embryos. Nevertheless, ECG is widely used for heartbeat detection in adult zebrafish since ECG waveforms' similarity between zebrafish and humans is prominent. High-frequency ultrasound imaging (echocardiography) and modern electronic sensor tag also have been proposed. Despite the fact that each method has its benefits and limitations, it is proved that zebrafish have become a promising animal model for human cardiovascular disease, drug pharmaceutical, and toxicological research. Using those tools, we conclude that zebrafish behaviors as an excellent small animal model to perform real-time monitoring for the developmental heart process with transparent body appearance, to conduct the in vivo cardiovascular performance and gene function assays, as well as to perform high-throughput/high content drug screening.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...