Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Med Genet ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38719349

RESUMEN

BACKGROUND: We aimed to analyse the efficacy and added value of a targeted Israeli expanded carrier screening panel (IL-ECSP), beyond the first-tier test covered by the Israeli Ministry of Health (IMOH) and the second-tier covered by the Health Maintenance Organisations (HMOs). METHODS: A curated variant-based IL-ECSP, tailored to the uniquely diverse Israeli population, was offered at two tertiary hospitals and a major genetics laboratory. The panel includes 1487 variants in 357 autosomal recessive and X-linked genes. RESULTS: We analysed 10 115 Israeli samples during an 18-month period. Of these, 6036 (59.7%) were tested as couples and 4079 (40.3%) were singles. Carriers were most frequently identified with mutations in the following genes: GJB2/GJB6 (1:22 allele frequency), CFTR (1:28), GBA (1:34), TYR (1:39), PAH (1:50), SMN1 (1:52) and HEXA (1:56). Of 3018 couples tested, 753 (25%) had no findings, in 1464 (48.5%) only one partner was a carrier, and in 733 (24.3%) both were carriers of different diseases. We identified 79 (2.6%) at-risk couples, where both partners are carriers of the same autosomal recessive condition, or the female carries an X-linked disease. Importantly, 48.1% of these would not have been detected by ethnically-based screening tests currently provided by the IMOH and HMOs, for example, variants in GBA, TYR, PAH and GJB2/GJB6. CONCLUSION: This is the largest cohort of targeted ECSP testing, tailored to the diverse Israeli population. The IL-ECSP expands the identification of couples at risk and empowers their reproductive choices. We recommend endorsing an expanded targeted panel to the National Genetic Carrier Screening programme.

3.
J Neurol ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625400

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder. It is mostly sporadic, with the C9orf72 repeat expansion being the most common genetic cause. While the prevalence of C9orf72-ALS in patients from different populations has been studied, data regarding the yield of C9orf72 compared to an ALS gene panel testing is limited.We aimed to explore the application of C9orf72 versus a gene panel in the general Israeli population. A total of 140 ALS patients attended our Neurogenetics Clinic throughout 2018-2023. Disease onset was between ages 60 and 69 years for most patients (34%); however, a quarter had an early-onset disease (< 50 years). Overall, 119 patients (85%) were genetically evaluated: 116 (97%) were tested for the C9orf72 repeat expansion and 64 (54%) underwent gene panel testing. The C9orf72 repeat expansion had a prevalence of 21% among Ashkenazi Jewish patients compared to 5.7% in non-Ashkenazi patients, while the gene panel had a higher yield in non-Ashkenazi patients with 14% disease-causing variants compared to 5.7% in Ashkenazi Jews. Among early-onset ALS patients, panel testing was positive in 12% compared to 2.9% for C9orf72.We suggest a testing strategy for the Israeli ALS patients: C9orf72 should be the first-tier test in Ashkenazi Jewish patients, while a gene panel should be considered as the first step in non-Ashkenazi and early-onset patients. Tiered testing has important implications for patient management, including prognosis, ongoing clinical trials, and prevention in future generations. Similar studies should be implemented worldwide to uncover the diverse ALS genetic architecture and facilitate tailored care.

4.
Hum Genet ; 143(3): 455-469, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38526744

RESUMEN

Neurons form the basic anatomical and functional structure of the nervous system, and defects in neuronal differentiation or formation of neurites are associated with various psychiatric and neurodevelopmental disorders. Dynamic changes in the cytoskeleton are essential for this process, which is, inter alia, controlled by the dedicator of cytokinesis 4 (DOCK4) through the activation of RAC1. Here, we clinically describe 7 individuals (6 males and one female) with variants in DOCK4 and overlapping phenotype of mild to severe global developmental delay. Additional symptoms include coordination or gait abnormalities, microcephaly, nonspecific brain malformations, hypotonia and seizures. Four individuals carry missense variants (three of them detected de novo) and three individuals carry null variants (two of them maternally inherited). Molecular modeling of the heterozygous missense variants suggests that the majority of them affect the globular structure of DOCK4. In vitro functional expression studies in transfected Neuro-2A cells showed that all missense variants impaired neurite outgrowth. Furthermore, Dock4 knockout Neuro-2A cells also exhibited defects in promoting neurite outgrowth. Our results, including clinical, molecular and functional data, suggest that loss-of-function variants in DOCK4 probable cause a variable spectrum of a novel neurodevelopmental disorder with microcephaly.


Asunto(s)
Proteínas Activadoras de GTPasa , Heterocigoto , Microcefalia , Mutación Missense , Trastornos del Neurodesarrollo , Humanos , Microcefalia/genética , Femenino , Masculino , Preescolar , Proteínas Activadoras de GTPasa/genética , Niño , Trastornos del Neurodesarrollo/genética , Mutación con Pérdida de Función , Animales , Discapacidades del Desarrollo/genética , Ratones , Lactante , Fenotipo , Adolescente
5.
JAMA Netw Open ; 7(2): e240146, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38386321

RESUMEN

Importance: National implementation of rapid trio genome sequencing (rtGS) in a clinical acute setting is essential to ensure advanced and equitable care for ill neonates. Objective: To evaluate the feasibility, diagnostic efficacy, and clinical utility of rtGS in neonatal intensive care units (NICUs) throughout Israel. Design, Setting, and Participants: This prospective, public health care-based, multicenter cohort study was conducted from October 2021 to December 2022 with the Community Genetics Department of the Israeli Ministry of Health and all Israeli medical genetics institutes (n = 18) and NICUs (n = 25). Critically ill neonates suspected of having a genetic etiology were offered rtGS. All sequencing, analysis, and interpretation of data were performed in a central genomics center at Tel-Aviv Sourasky Medical Center. Rapid results were expected within 10 days. A secondary analysis report, issued within 60 days, focused mainly on cases with negative rapid results and actionable secondary findings. Pathogenic, likely pathogenic, and highly suspected variants of unknown significance (VUS) were reported. Main Outcomes and Measures: Diagnostic rate, including highly suspected disease-causing VUS, and turnaround time for rapid results. Clinical utility was assessed via questionnaires circulated to treating neonatologists. Results: A total of 130 neonates across Israel (70 [54%] male; 60 [46%] female) met inclusion criteria and were recruited. Mean (SD) age at enrollment was 12 (13) days. Mean (SD) turnaround time for rapid report was 7 (3) days. Diagnostic efficacy was 50% (65 of 130) for disease-causing variants, 11% (14 of 130) for VUS suspected to be causative, and 1 novel gene candidate (1%). Disease-causing variants included 12 chromosomal and 52 monogenic disorders as well as 1 neonate with uniparental disomy. Overall, the response rate for clinical utility questionnaires was 82% (107 of 130). Among respondents, genomic testing led to a change in medical management for 24 neonates (22%). Results led to immediate precision medicine for 6 of 65 diagnosed infants (9%), an additional 2 (3%) received palliative care, and 2 (3%) were transferred to nursing homes. Conclusions and Relevance: In this national cohort study, rtGS in critically ill neonates was feasible and diagnostically beneficial in a public health care setting. This study is a prerequisite for implementation of rtGS for ill neonates into routine care and may aid in design of similar studies in other public health care systems.


Asunto(s)
Enfermedad Crítica , Cuidado Intensivo Neonatal , Lactante , Recién Nacido , Femenino , Masculino , Humanos , Estudios de Cohortes , Estudios Prospectivos , Unidades de Cuidado Intensivo Neonatal
6.
Am J Med Genet A ; 194(6): e63550, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38297485

RESUMEN

Klippel-Feil syndrome (KFS) has a genetically heterogeneous phenotype with six known genes, exhibiting both autosomal dominant and autosomal recessive inheritance patterns. PUF60 is a nucleic acid-binding protein, which is involved in a number of nuclear processes, including pre-mRNA splicing, apoptosis, and transcription regulation. Pathogenic variants in this gene have been described in Verheij syndrome due to either 8q24.3 microdeletion or PUF60 single-nucleotide variants. PUF60-associated conditions usually include intellectual disability, among other findings, some overlapping KFS; however, PUF60 is not classically referred to as a KFS gene. Here, we describe a 6-year-old female patient with clinically diagnosed KFS and normal cognition, who harbors a heterozygous de novo variant in the PUF60 gene (c.1179del, p.Ile394Serfs*7). This is a novel frameshift variant, which is predicted to result in a premature stop codon. Clinically, our patient demonstrates a pattern of malformations that matches reported cases of PUF60 variants; however, unlike most others, she has no clear learning difficulties. In light of these findings, we propose that PUF60 should be considered in the differential diagnosis of KFS and that normal cognition should not exclude its testing.


Asunto(s)
Síndrome de Klippel-Feil , Factores de Empalme de ARN , Humanos , Femenino , Niño , Diagnóstico Diferencial , Factores de Empalme de ARN/genética , Síndrome de Klippel-Feil/genética , Síndrome de Klippel-Feil/diagnóstico , Síndrome de Klippel-Feil/fisiopatología , Síndrome de Klippel-Feil/patología , Fenotipo , Cognición , Proteínas Represoras/genética , Mutación con Pérdida de Función/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/patología
8.
N Engl J Med ; 389(18): 1685-1692, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37913506

RESUMEN

Two siblings presented with cardiomyopathy, hypertension, arrhythmia, and fibrosis of the left atrium. Each had a homozygous null variant in CORIN, the gene encoding atrial natriuretic peptide (ANP)-converting enzyme. A plasma sample obtained from one of the siblings had no detectable levels of corin or N-terminal pro-ANP but had elevated levels of B-type natriuretic peptide (BNP) and one of the two protein markers of fibrosis that we tested. These and other findings support the hypothesis that BNP cannot fully compensate for a lack of activation of the ANP pathway and that corin is critical to normal ANP activity, left atrial function, and cardiovascular homeostasis.


Asunto(s)
Arritmias Cardíacas , Cardiomiopatías , Atrios Cardíacos , Hipertensión , Humanos , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patología , Fibrilación Atrial , Factor Natriurético Atrial/sangre , Factor Natriurético Atrial/genética , Factor Natriurético Atrial/metabolismo , Cardiomiopatías/sangre , Cardiomiopatías/diagnóstico , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Fibrosis , Atrios Cardíacos/diagnóstico por imagen , Atrios Cardíacos/metabolismo , Atrios Cardíacos/patología , Hipertensión/sangre , Hipertensión/genética , Hipertensión/metabolismo , Péptido Natriurético Encefálico/sangre , Péptido Natriurético Encefálico/genética , Péptido Natriurético Encefálico/metabolismo , Serina Endopeptidasas/sangre , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Hermanos
9.
Mol Genet Metab ; 140(3): 107702, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37776842

RESUMEN

Propionic acidemia (PA) is an autosomal recessive metabolic disorder caused by variants in PCCA or PCCB, both sub-units of the propionyl-CoA carboxylase (PCC) enzyme. PCC is required for the catabolism of certain amino acids and odd-chain fatty acids. In its absence, the accumulated toxic metabolites cause metabolic acidosis, neurologic symptoms, multi-organ dysfunction and possible death. The clinical presentation of PA is highly variable, with typical onset in the neonatal or early infantile period. We encountered two families, whose children were diagnosed with PA. Exome sequencing (ES) failed to identify a pathogenic variant, and we proceeded with genome sequencing (GS), demonstrating homozygosity to a deep intronic PCCB variant. RNA analysis established that this variant creates a pseudoexon with a premature stop codon. The parents are variant carriers, though three of them display pseudo-homozygosity due to a common large benign intronic deletion on the second allele. The parental presumed homozygosity merits special attention, as it masked the causative variant at first, which was resolved only by RNA studies. Arriving at a rapid diagnosis, whether biochemical or genetic, can be crucial in directing lifesaving care, concluding the diagnostic odyssey, and allowing the family prenatal testing in subsequent pregnancies. This study demonstrates the power of integrative genetic studies in reaching a diagnosis, utilizing GS and RNA analysis to overcome ES limitations and define pathogenicity. Importantly, it highlights that intronic deletions should be taken into consideration when analyzing genomic data, so that pseudo-homozygosity would not be misinterpreted as true homozygosity, and pathogenic variants will not be mislabeled as benign.


Asunto(s)
Acidemia Propiónica , Recién Nacido , Niño , Humanos , Acidemia Propiónica/genética , ARN , Metilmalonil-CoA Descarboxilasa/genética , Mutación , Codón sin Sentido
10.
Prenat Diagn ; 43(10): 1374-1377, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37639281

RESUMEN

A Jewish couple of mixed origin was referred for genetic counseling following termination of pregnancy at 18 weeks of gestation due to severe ventriculomegaly with aqueduct stenosis. Trio exome sequencing revealed a loss-of-function heterozygous variant in the SMARCC1 gene inherited from an unaffected mother. The SMARCC1 gene is associated with embryonic neurodevelopmental processes. Recent studies have linked perturbations of the gene with autosomal dominant congenital hydrocephalus, albeit with reduced penetrance. However, these studies were not referenced in the SMARCC1 OMIM record (*601732) and the gene was not considered, at the time, an OMIM morbid gene. Following our case and appeal, SMARCC1 is now considered a susceptibility gene for hydrocephalus. This allowed us to reclassify the variant as likely pathogenic and empowered the couple to make informed reproductive choices.


Asunto(s)
Hidrocefalia , Factores de Transcripción , Femenino , Humanos , Embarazo , Asesoramiento Genético , Heterocigoto , Hidrocefalia/genética , Penetrancia , Factores de Transcripción/genética
11.
Am J Hum Genet ; 110(8): 1394-1413, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37467750

RESUMEN

DExD/H-box RNA helicases (DDX/DHX) are encoded by a large paralogous gene family; in a subset of these human helicase genes, pathogenic variation causes neurodevelopmental disorder (NDD) traits and cancer. DHX9 encodes a BRCA1-interacting nuclear helicase regulating transcription, R-loops, and homologous recombination and exhibits the highest mutational constraint of all DDX/DHX paralogs but remains unassociated with disease traits in OMIM. Using exome sequencing and family-based rare-variant analyses, we identified 20 individuals with de novo, ultra-rare, heterozygous missense or loss-of-function (LoF) DHX9 variant alleles. Phenotypes ranged from NDDs to the distal symmetric polyneuropathy axonal Charcot-Marie-Tooth disease (CMT2). Quantitative Human Phenotype Ontology (HPO) analysis demonstrated genotype-phenotype correlations with LoF variants causing mild NDD phenotypes and nuclear localization signal (NLS) missense variants causing severe NDD. We investigated DHX9 variant-associated cellular phenotypes in human cell lines. Whereas wild-type DHX9 was restricted to the nucleus, NLS missense variants abnormally accumulated in the cytoplasm. Fibroblasts from an individual with an NLS variant also showed abnormal cytoplasmic DHX9 accumulation. CMT2-associated missense variants caused aberrant nucleolar DHX9 accumulation, a phenomenon previously associated with cellular stress. Two NDD-associated variants, p.Gly411Glu and p.Arg761Gln, altered DHX9 ATPase activity. The severe NDD-associated variant p.Arg141Gln did not affect DHX9 localization but instead increased R-loop levels and double-stranded DNA breaks. Dhx9-/- mice exhibited hypoactivity in novel environments, tremor, and sensorineural hearing loss. All together, these results establish DHX9 as a critical regulator of mammalian neurodevelopment and neuronal homeostasis.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Trastornos del Neurodesarrollo , Animales , Humanos , Ratones , Línea Celular , Enfermedad de Charcot-Marie-Tooth/genética , ARN Helicasas DEAD-box/genética , Diclorodifenil Dicloroetileno , ADN Helicasas , Mamíferos , Proteínas de Neoplasias/genética
13.
Hum Genomics ; 17(1): 30, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36978159

RESUMEN

BACKGROUND: The American College of Medical Genetics and Genomics (ACMG) recently published new tier-based carrier screening recommendations. While many pan-ethnic genetic disorders are well established, some genes carry pathogenic founder variants (PFVs) that are unique to specific ethnic groups. We aimed to demonstrate a community data-driven approach to creating a pan-ethnic carrier screening panel that meets the ACMG recommendations. METHODS: Exome sequencing data from 3061 Israeli individuals were analyzed. Machine learning determined ancestries. Frequencies of candidate pathogenic/likely pathogenic (P/LP) variants based on ClinVar and Franklin were calculated for each subpopulation based on the Franklin community platform and compared with existing screening panels. Candidate PFVs were manually curated through community members and the literature. RESULTS: The samples were automatically assigned to 13 ancestries. The largest number of samples was classified as Ashkenazi Jewish (n = 1011), followed by Muslim Arabs (n = 613). We detected one tier-2 and seven tier-3 variants that were not included in existing carrier screening panels for Ashkenazi Jewish or Muslim Arab ancestries. Five of these P/LP variants were supported by evidence from the Franklin community. Twenty additional variants were detected that are potentially pathogenic tier-2 or tier-3. CONCLUSIONS: The community data-driven and sharing approaches facilitate generating inclusive and equitable ethnically based carrier screening panels. This approach identified new PFVs missing from currently available panels and highlighted variants that may require reclassification.


Asunto(s)
Etnicidad , Genómica , Humanos , Etnicidad/genética , Árabes , Pruebas Genéticas
14.
Hum Genet ; 142(5): 683-690, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35314883

RESUMEN

The complement system regulator CD55 was initially found to carry the Cromer blood group system antigens, and its complete loss of function was subsequently revealed to cause a severe monogenic gastrointestinal syndrome characterized by protein-losing enteropathy and susceptibility to venous thrombosis. Here we present homozygosity to the CD55 c.596C>T; p.Ser199Leu variant, which was previously described as the Cromer Dr(a-) genotype, in two Bukharan Jewish CD55-deficiency patients with variable disease severity. We confirm that this missense variant causes aberrant splicing and deletion of 44 bp in exon 5, leading to premature termination and low expression of the CD55 protein. Furthermore, Patient 1 exhibited a mildly abnormal B cell immunophenotyping profile. By population screening we established that this variant is highly prevalent in the Bukharan Jewish population, with a carrier frequency of 1:17, suggesting that many similar patients are un- or mis-diagnosed. The phenotypic variability, ranging from abdominal pain when eating a high-fat diet to the full CD55-deficiency phenotype, is likely related to modifiers affecting the proportion of the variant that is able to escape aberrant splicing. Establishing the diagnosis of CD55-deficiency in a timely manner, even in patients with milder symptoms, may have a critical effect on their management and quality-of-life since treatment with the complement inhibitor eculizumab is highly effective in ameliorating disease manifestations. Awareness of founder mutations within certain populations can further guide genetic testing and prevent a diagnostic odyssey, by placing this CD55 variant high on the differential diagnosis.


Asunto(s)
Antígenos de Grupos Sanguíneos , Judíos , Humanos , Antígenos CD55/genética , Antígenos de Grupos Sanguíneos/genética , Fenotipo , Genotipo
15.
Prenat Diagn ; 42(12): 1484-1487, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36221156

RESUMEN

FETAL PHENOTYPE: A couple of Ashkenazi Jewish descent was referred for an early anatomy scan at 14 + 2 weeks of gestation following a previous pregnancy termination due to posterior encephalocele and enlarged kidneys. The index pregnancy was also positive for several fetal abnormalities, including enlarged kidneys with cystic dysplasia and abnormal cerebellar morphology highly suggestive of Joubert syndrome. GENETIC DIAGNOSTIC TEST PERFORMED, RESULT, AND INTERPRETATION: Trio exome sequencing revealed compound heterozygosity for variants in the TMEM67 gene: a known pathogenic maternally inherited variant found in trans with a paternal intronic variant of unknown significance. RNA analysis revealed that the intronic variant creates a cryptic acceptor splice site in intron 12, leading to the insertion of 22 bp and causing a frameshift with a premature stop codon. This analysis enabled the reclassification of the intronic variant to likely pathogenic. IMPLICATIONS AND NOVELTY: This information empowered the couple to make informed reproductive choices and opt for preimplantation genetic testing (PGT) for future pregnancies.


Asunto(s)
Difusión de la Información , Sitios de Empalme de ARN , Exones , Mutación , Intrones
16.
J Mol Neurosci ; 72(8): 1715-1723, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35676594

RESUMEN

AOA2 is a rare progressive adolescent-onset disease characterised by cerebellar vermis atrophy, peripheral neuropathy and elevated serum alpha-fetoprotein (AFP) caused by pathogenic bi-allelic variants in SETX, encoding senataxin, involved in DNA repair and RNA maturation. Sanger sequencing of genomic DNA, co-segregation and oxidative stress functional studies were performed in Family 1. Trio whole-exome sequencing (WES), followed by SETX RNA and qRT-PCR analysis, were performed in Family 2. Sanger sequencing in Family 1 revealed two novel in-frame SETX deletion and duplication variants in trans (c.7009_7011del; p.Val2337del and c.7369_7371dup; p.His2457dup). Patients had increased induced chromosomal aberrations at baseline and following exposure to higher mitomycin-C concentration and increased sensitivity to oxidative stress at the lower mitomycin-C concentration in cell viability test. Trio WES in Family 2 revealed two novel SETX variants in trans, a nonsense variant (c.568C > T; p.Gln190*), and a deep intronic variant (c.5549-107A > G). Intronic variant analysis and SETX mRNA expression revealed activation of a cryptic exon introducing a premature stop codon (p.Met1850Lysfs*18) and resulting in aberrant splicing, as shown by qRT-PCR analysis, thus leading to higher levels of cryptic exon activation. Along with a second deleterious allele, this variant leads to low levels of SETX mRNA and disease manifestations. Our report expands the phenotypic spectrum of AOA2. Results provide initial support for the hypomorphic nature of the novel in-frame deletion and duplication variants in Family 1. Deep-intronic variant analysis of Family 2 variants potentially reveals a previously undescribed poison exon in the SETX gene, which may contribute to tailored therapy development.


Asunto(s)
Apraxias , Venenos , Adolescente , Apraxias/genética , Apraxias/patología , Codón sin Sentido , ADN Helicasas/genética , Exones , Humanos , Israel , Mitomicina , Enzimas Multifuncionales/genética , Mutación , ARN Helicasas/genética , Ataxias Espinocerebelosas/congénito
18.
Am J Hum Genet ; 109(3): 518-532, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35108495

RESUMEN

Cell adhesion molecules are membrane-bound proteins predominantly expressed in the central nervous system along principal axonal pathways with key roles in nervous system development, neural cell differentiation and migration, axonal growth and guidance, myelination, and synapse formation. Here, we describe ten affected individuals with bi-allelic variants in the neuronal cell adhesion molecule NRCAM that lead to a neurodevelopmental syndrome of varying severity; the individuals are from eight families. This syndrome is characterized by developmental delay/intellectual disability, hypotonia, peripheral neuropathy, and/or spasticity. Computational analyses of NRCAM variants, many of which cluster in the third fibronectin type III (Fn-III) domain, strongly suggest a deleterious effect on NRCAM structure and function, including possible disruption of its interactions with other proteins. These findings are corroborated by previous in vitro studies of murine Nrcam-deficient cells, revealing abnormal neurite outgrowth, synaptogenesis, and formation of nodes of Ranvier on myelinated axons. Our studies on zebrafish nrcamaΔ mutants lacking the third Fn-III domain revealed that mutant larvae displayed significantly altered swimming behavior compared to wild-type larvae (p < 0.03). Moreover, nrcamaΔ mutants displayed a trend toward increased amounts of α-tubulin fibers in the dorsal telencephalon, demonstrating an alteration in white matter tracts and projections. Taken together, our study provides evidence that NRCAM disruption causes a variable form of a neurodevelopmental disorder and broadens the knowledge on the growing role of the cell adhesion molecule family in the nervous system.


Asunto(s)
Trastornos del Neurodesarrollo , Enfermedades del Sistema Nervioso Periférico , Animales , Axones/metabolismo , Adhesión Celular/genética , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular Neuronal , Humanos , Ratones , Hipotonía Muscular/genética , Hipotonía Muscular/metabolismo , Espasticidad Muscular/metabolismo , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
20.
Rambam Maimonides Med J ; 12(3)2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34270405

RESUMEN

Gaucher disease (GD) is an autosomal recessive disease characterized by the buildup of glucocerebrosides in macrophages, resulting in the formation of "Gaucher cells." These cells predominantly infiltrate the liver, spleen, and bone marrow leading to hepatosplenomegaly, cytopenia, and bone pain. Anemia in GD is typically considered to result from non-hemolytic processes. Although rare, a higher rate of hemolytic anemia of the autoimmune type has been reported in GD than in the general population. The literature on non-immune hemolytic anemia in GD is scarce. We review the literature on hemolytic anemia in GD and report on a case of non-immune hemolytic anemia secondary to GD. We believe this is the first description of a patient with confirmed GD and symptomatic non-immune hemolytic anemia that responded to GD-specific treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...