Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
STAR Protoc ; 3(1): 101122, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35118430

RESUMEN

Direct cardiac reprogramming, in which fibroblasts are converted into induced cardiomyocytes (iCMs) with cardiogenic transcription factors, may be a promising approach for myocardial regeneration. Here, we present a protocol for cardiac reprogramming using a handmade hydrogel culture system. This system can recapitulate substrate stiffness comparable to that of the native myocardium. This protocol features improved efficiency of cardiac reprogramming by generating threefold more beating iCMs on the Matrigel-based hydrogel culture system compared to that on conventional polystyrene dishes. For complete details on the use and execution of this protocol, please refer to Kurotsu et al. (2020).


Asunto(s)
Reprogramación Celular , Hidrogeles , Biomimética , Fibroblastos , Miocitos Cardíacos
2.
Stem Cell Reports ; 15(3): 612-628, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32857980

RESUMEN

Direct cardiac reprogramming holds great potential for regenerative medicine. However, it remains inefficient, and induced cardiomyocytes (iCMs) generated in vitro are less mature than those in vivo, suggesting that undefined extrinsic factors may regulate cardiac reprogramming. Previous in vitro studies mainly used hard polystyrene dishes, yet the effect of substrate rigidity on cardiac reprogramming remains unclear. Thus, we developed a Matrigel-based hydrogel culture system to determine the roles of matrix stiffness and mechanotransduction in cardiac reprogramming. We found that soft matrix comparable with native myocardium promoted the efficiency and quality of cardiac reprogramming. Mechanistically, soft matrix enhanced cardiac reprogramming via inhibition of integrin, Rho/ROCK, actomyosin, and YAP/TAZ signaling and suppression of fibroblast programs, which were activated on rigid substrates. Soft substrate further enhanced cardiac reprogramming with Sendai virus vectors via YAP/TAZ suppression, increasing the reprogramming efficiency up to ∼15%. Thus, mechanotransduction could provide new targets for improving cardiac reprogramming.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Reprogramación Celular , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Actomiosina/metabolismo , Animales , Vectores Genéticos/metabolismo , Integrinas/metabolismo , Ratones Transgénicos , Miocardio/citología , Miocitos Cardíacos/citología , Miosina Tipo II/metabolismo , Virus Sendai/genética , Transducción de Señal , Proteínas Señalizadoras YAP , Proteínas de Unión al GTP rho/metabolismo , Quinasas Asociadas a rho/metabolismo
3.
Biochem Biophys Res Commun ; 513(4): 1041-1047, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31010673

RESUMEN

Cardiovascular disease is a leading cause of death worldwide. Mammalian cardiomyocytes (CMs) proliferate during embryonic development, whereas they largely lose their regenerative capacity after birth. Defined factors expressed in cardiac progenitors or embryonic CMs may activate the cell cycle and induce CM proliferation in postnatal and adult hearts. Here, we report that the overexpression of Tbx6, enriched in the cardiac mesoderm (progenitor cells), induces CM proliferation in postnatal and adult mouse hearts. By screening 24 factors enriched in cardiac progenitors or embryonic CMs, we found that only Tbx6 could induce CM proliferation in primary cultured postnatal rat CMs. Intriguingly, it did not induce the proliferation of cardiac fibroblasts. We next generated a recombinant adeno-associated virus serotype 9 vector encoding Tbx6 (AAV9-Tbx6) for transduction into mouse CMs in vivo. The subcutaneous injection of AAV9-Tbx6 into neonatal mice induced CM proliferation in postnatal and adult mouse hearts. Mechanistically, Tbx6 overexpression upregulated multiple cell cycle activators including Aurkb, Mki67, Ccna1, and Ccnb2 and suppressed the tumor suppressor Rb1. Thus, Tbx6 promotes CM proliferation in postnatal and adult mouse hearts by modifying the expression of cell cycle regulators.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Miocardio/citología , Miocitos Cardíacos/citología , Proteínas de Dominio T Box/fisiología , Adenoviridae/genética , Animales , Animales Recién Nacidos , Proteínas de Ciclo Celular/efectos de los fármacos , Células Cultivadas , Ciclinas/efectos de los fármacos , Vectores Genéticos/administración & dosificación , Corazón , Ratones , Ratas , Regeneración , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Proteínas de Dominio T Box/farmacología
4.
Nat Commun ; 10(1): 674, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30787297

RESUMEN

Direct cardiac reprogramming from fibroblasts can be a promising approach for disease modeling, drug screening, and cardiac regeneration in pediatric and adult patients. However, postnatal and adult fibroblasts are less efficient for reprogramming compared with embryonic fibroblasts, and barriers to cardiac reprogramming associated with aging remain undetermined. In this study, we screened 8400 chemical compounds and found that diclofenac sodium (diclofenac), a non-steroidal anti-inflammatory drug, greatly enhanced cardiac reprogramming in combination with Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Hand2. Intriguingly, diclofenac promoted cardiac reprogramming in mouse postnatal and adult tail-tip fibroblasts (TTFs), but not in mouse embryonic fibroblasts (MEFs). Mechanistically, diclofenac enhanced cardiac reprogramming by inhibiting cyclooxygenase-2, prostaglandin E2/prostaglandin E receptor 4, cyclic AMP/protein kinase A, and interleukin 1ß signaling and by silencing inflammatory and fibroblast programs, which were activated in postnatal and adult TTFs. Thus, anti-inflammation represents a new target for cardiac reprogramming associated with aging.


Asunto(s)
Reprogramación Celular/efectos de los fármacos , Ciclooxigenasa 2/farmacología , Miocitos Cardíacos/efectos de los fármacos , Subtipo EP4 de Receptores de Prostaglandina E/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Antiinflamatorios no Esteroideos/farmacología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/efectos de los fármacos , AMP Cíclico , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ciclooxigenasa 2/efectos de los fármacos , Diclofenaco/farmacología , Dinoprostona , Fibroblastos , Factor de Transcripción GATA4/metabolismo , Humanos , Inflamación , Interleucina-1beta , Factores de Transcripción MEF2/metabolismo , Ratones , Ratones Transgénicos , Proteínas de Dominio T Box/metabolismo
5.
Cell Stem Cell ; 23(3): 382-395.e5, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30100166

RESUMEN

The mesoderm arises from pluripotent epiblasts and differentiates into multiple lineages; however, the underlying molecular mechanisms are unclear. Tbx6 is enriched in the paraxial mesoderm and is implicated in somite formation, but its function in other mesoderms remains elusive. Here, using direct reprogramming-based screening, single-cell RNA-seq in mouse embryos, and directed cardiac differentiation in pluripotent stem cells (PSCs), we demonstrated that Tbx6 induces nascent mesoderm from PSCs and determines cardiovascular and somite lineage specification via its temporal expression. Tbx6 knockout in mouse PSCs using CRISPR/Cas9 technology inhibited mesoderm and cardiovascular differentiation, whereas transient Tbx6 expression induced mesoderm and cardiovascular specification from mouse and human PSCs via direct upregulation of Mesp1, repression of Sox2, and activation of BMP/Nodal/Wnt signaling. Notably, prolonged Tbx6 expression suppressed cardiac differentiation and induced somite lineages, including skeletal muscle and chondrocytes. Thus, Tbx6 is critical for mesoderm induction and subsequent lineage diversification.


Asunto(s)
Sistema Cardiovascular/metabolismo , Linaje de la Célula , Células Madre Pluripotentes/metabolismo , Somitos/citología , Somitos/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Humanos , Masculino , Mesodermo , Ratones , Ratones Endogámicos ICR , Ratones Transgénicos , Proteínas de Dominio T Box , Factores de Transcripción/genética
6.
Cell Stem Cell ; 22(1): 91-103.e5, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29276141

RESUMEN

Direct cardiac reprogramming holds great promise for regenerative medicine. We previously generated directly reprogrammed induced cardiomyocyte-like cells (iCMs) by overexpression of Gata4, Mef2c, and Tbx5 (GMT) using retrovirus vectors. However, integrating vectors pose risks associated with insertional mutagenesis and disruption of gene expression and are inefficient. Here, we show that Sendai virus (SeV) vectors expressing cardiac reprogramming factors efficiently and rapidly reprogram both mouse and human fibroblasts into integration-free iCMs via robust transgene expression. SeV-GMT generated 100-fold more beating iCMs than retroviral-GMT and shortened the duration to induce beating cells from 30 to 10 days in mouse fibroblasts. In vivo lineage tracing revealed that the gene transfer of SeV-GMT was more efficient than retroviral-GMT in reprogramming resident cardiac fibroblasts into iCMs in mouse infarct hearts. Moreover, SeV-GMT improved cardiac function and reduced fibrosis after myocardial infarction. Thus, efficient, non-integrating SeV vectors may serve as a powerful system for cardiac regeneration.


Asunto(s)
Reprogramación Celular , Vectores Genéticos/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Virus Sendai/genética , Potenciales de Acción , Animales , Animales Recién Nacidos , Linaje de la Célula , Proliferación Celular , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Humanos , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Factores de Transcripción/metabolismo , Transgenes , Virión/metabolismo
7.
Biochem Biophys Res Commun ; 495(1): 884-891, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29158084

RESUMEN

The coronary vascular system is critical for myocardial growth and cardiomyocyte survival. However, the molecular mechanism regulating coronary angiogenesis remains elusive. Vascular endothelial growth factor (VEGF) regulates angiogenesis by binding to the specific receptors Flk1 and Flt1, which results in different functions. Despite the importance of Flk1 and Flt1, their expression in the coronary vasculature remains largely unknown due to the lack of appropriate antibodies for immunostaining. Here, we analyzed multiple reporter mice including Flk1-GFP BAC transgenic (Tg), Flk1-LacZ knock-in, Flt1-DsRed BAC Tg, and Flk1-GFP/Flt1-DsRed double Tg animals to determine expression patterns in mouse hearts during cardiac growth and after myocardial infarction (MI). We found that Flk1 was expressed in endothelial cells (ECs) with a pattern of epicardial-to-endocardial transmural gradients in the neonatal mouse ventricle, which was downregulated in adult coronary vessels with development. In contrast, Flt1 was homogeneously expressed in the ECs of neonatal mouse hearts and expression was maintained until adulthood. After MI, expression of both Flk1 and Flt1 was induced in the regenerating coronary vessels at day 7. Intriguingly, Flk1 expression was downregulated thereafter, whereas Flt1 expression was maintained in the newly formed coronary vessels until 30 days post-MI, recapitulating their expression kinetics during development. This is the first report demonstrating the spatiotemporal expression patterns of Flk1 and Flt1 in the coronary vascular system during development and after MI; thus, this study suggests that these factors have distinct and important functions in coronary angiogenesis.


Asunto(s)
Envejecimiento/metabolismo , Vasos Coronarios/metabolismo , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Vasos Coronarios/crecimiento & desarrollo , Progresión de la Enfermedad , Regulación del Desarrollo de la Expresión Génica , Ratones , Neovascularización Fisiológica/fisiología
8.
Int J Mol Sci ; 18(8)2017 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-28825623

RESUMEN

Direct reprogramming is a promising approach in regenerative medicine. Overexpression of the cardiac transcription factors Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Hand2 (GHMT) directly reprogram fibroblasts into cardiomyocyte-like cells (iCMs). However, the critical timing of transgene expression and the molecular mechanisms for cardiac reprogramming remain unclear. The conventional doxycycline (Dox)-inducible temporal transgene expression systems require simultaneous transduction of two vectors (pLVX-rtTA/pLVX-cDNA) harboring the reverse tetracycline transactivator (rtTA) and the tetracycline response element (TRE)-controlled transgene, respectively, leading to inefficient cardiac reprogramming. Herein, we developed a single-construct-based polycistronic Dox-inducible vector (pDox-cDNA) expressing both the rtTA and TRE-controlled transgenes. Fluorescence activated cell sorting (FACS) analyses, quantitative RT-PCR, and immunostaining revealed that pDox-GMT increased cardiac reprogramming three-fold compared to the conventional pLVX-rtTA/pLVX-GMT. After four weeks, pDox-GMT-induced iCMs expressed multiple cardiac genes, produced sarcomeric structures, and beat spontaneously. Co-transduction of pDox-Hand2 with retroviral pMX-GMT increased cardiac reprogramming three-fold compared to pMX-GMT alone. Temporal Dox administration revealed that Hand2 transgene expression is critical during the first two weeks of cardiac reprogramming. Microarray analyses demonstrated that Hand2 represses cell cycle-promoting genes and enhances cardiac reprogramming. Thus, we have developed an efficient temporal transgene expression system, which could be invaluable in the study of cardiac reprogramming.


Asunto(s)
Diferenciación Celular/genética , Reprogramación Celular/genética , Doxiciclina/farmacología , Miocitos Cardíacos/metabolismo , Tetraciclina/farmacología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/efectos de los fármacos , Doxiciclina/química , Fibroblastos/citología , Fibroblastos/metabolismo , Factor de Transcripción GATA4/genética , Regulación de la Expresión Génica/efectos de los fármacos , Vectores Genéticos/genética , Humanos , Factores de Transcripción MEF2/genética , Ratones , Miocitos Cardíacos/efectos de los fármacos , Medicina Regenerativa/tendencias , Proteínas de Dominio T Box/genética , Transactivadores/genética , Transducción Genética , Transgenes/efectos de los fármacos
9.
Sci Rep ; 7(1): 3439, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28611390

RESUMEN

Idiopathic pulmonary fibrosis (IPF) involves alveolar epithelial injury and abnormal collagen production caused by activated fibroblasts; transforming growth factor (TGF)-ß1 is implicated in this activation. In this study, we screened for chemicals capable of inhibiting TGF-ß1-induced collagen production in cultured fibroblasts from medicines already in clinical use. We selected felodipine based on its extent of collagen production inhibition, clinical safety profile, and other pharmacological activity. Felodipine is a dihydropyridine Ca2+ channel blocker that has been used clinically to treat patients with high blood pressure. Felodipine suppressed collagen production within LL29 cells in the presence of TGF-ß1, but not in its absence. Intratracheal administration of felodipine prevented bleomycin-induced pulmonary fibrosis, alteration of lung mechanics and respiratory dysfunction. Felodipine also improved pulmonary fibrosis, as well as lung and respiratory function when administered after fibrosis development. Furthermore, administration of felodipine suppressed a bleomycin-induced increase in activated fibroblasts in the lung. We also found other dihydropyridine Ca2+ channel blockers (nifedipine and benidipine) inhibited collagen production in vitro and partially prevented bleomycin-induced pulmonary fibrosis, alteration of lung mechanics and respiratory dysfunction in vivo. We propose that these Ca2+ channel blockers may be therapeutically beneficial for IPF patients.


Asunto(s)
Bloqueadores de los Canales de Calcio/uso terapéutico , Felodipino/uso terapéutico , Fibrosis Pulmonar/tratamiento farmacológico , Animales , Bleomicina/toxicidad , Línea Celular , Humanos , Masculino , Ratones , Ratones Endogámicos ICR , Fibrosis Pulmonar/etiología
10.
J Card Fail ; 23(7): 552-557, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28529134

RESUMEN

The discovery of induced pluripotent stem cells (iPSCs) has revolutionized regenerative medicine. Autologous iPSCs can be generated by introducing 4 stem cell-specific factors (Oct4, Sox2, Klf4, c-Myc) into fibroblasts. iPSCs can propagate indefinitely and differentiate into clinically important cell types, including cardiomyocytes, in vitro. The iPSC-derived cardiomyocytes represent a promising source of cells for cell-based therapeutic approaches for cardiac regeneration. However, there are several challenges in the clinical application of iPSCs: tumorigenicity of immature cells, poor survival of the transplanted myocardial cells, and cost and efficacy of this therapeutic approach. We developed a new alternate approach for cardiac regeneration, called direct cardiac reprogramming. Instead of using stem cell factors, we overexpressed combinations of cardiac cell-specific genes in fibroblasts to directly induce cardiomyocytes without mediating through iPSCs. The direct reprogramming approach may overcome the challenges faced in the applicability of iPSC-based cell therapy. After the development of direct cardiac reprogramming, great progress has been made in improving the efficiency of direct cardiac reprogramming and applying this technology to regenerative medicine. Here, we provide an overview of the recent progress made, epigenetics, and potential clinical applications of direct cardiac reprogramming.


Asunto(s)
Técnicas de Reprogramación Celular/tendencias , Epigénesis Genética/fisiología , Insuficiencia Cardíaca/terapia , Regeneración/fisiología , Medicina Regenerativa/tendencias , Técnicas de Reprogramación Celular/métodos , Insuficiencia Cardíaca/fisiopatología , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Factor 4 Similar a Kruppel , Medicina Regenerativa/métodos
11.
Clin Calcium ; 26(12): 1697-1702, 2016.
Artículo en Japonés | MEDLINE | ID: mdl-27885180

RESUMEN

During cardiac development and maturation, the heart continuously receives hemodynamic stimuli, referred to mechanical stress. Mechanical stress governs both cardiac development and differentiation, and also plays an important role in the maintenance of cardiac homeostasis. Indeed, cardiac hypertrophic changes emerge as a result of adaptation to mechanical overload. However, it is difficult to measure the mechanical stress precisely. Therefore, the molecular mechanisms of hemodynamics-related diseases are minimally understood. The progress in mechanobioscience field has a potential to uncover the mechanisms of cardiac diseases, and is expected to result in drug discovery in the future.


Asunto(s)
Cardiopatías/terapia , Medicina Regenerativa , Animales , Reprogramación Celular , Corazón/embriología , Cardiopatías Congénitas , Humanos , Mecanotransducción Celular , Medicina Regenerativa/métodos , Estrés Mecánico
12.
J Pharmacol Exp Ther ; 350(1): 79-88, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24769542

RESUMEN

Idiopathic pulmonary fibrosis is thought to involve lung injury caused by reactive oxygen species (ROS), which in turn is followed by abnormal fibrosis. A transforming growth factor (TGF)-ß1-induced increase in myofibroblast number plays an important role in this abnormal fibrosis. We recently found that mepenzolate bromide (mepenzolate), which has been used clinically to treat gastrointestinal disorders, has ROS-reducing properties. In the present study, we examined the effect of mepenzolate on bleomycin-induced pulmonary fibrosis and lung dysfunction in mice. The severity of pulmonary fibrosis was assessed by histopathologic evaluation and determination of hydroxyproline levels. Lung mechanics (elastance) and respiratory function [forced vital capacity (FVC)] were assessed using a computer-controlled ventilator. Respiratory function was also evaluated by monitoring percutaneous arterial oxygen saturation (SpO2). Intratracheal administration of mepenzolate prior to bleomycin treatment reduced the extent of pulmonary fibrosis and changes in lung mechanics and led to a significant recovery of both FVC and SpO2 compared with control. Furthermore, mepenzolate produced a therapeutic effect even when it was administered after the development of fibrosis. Administration of mepenzolate also prevented bleomycin-induced pulmonary cell death and inflammatory responses and increased myofibroblast number. Mepenzolate also decreased NADPH oxidase activity and active TGF-ß1 level or increased glutathione S-transferase (GST) activity in the presence of bleomycin treatment. These results show that the intratracheal administration of mepenzolate reduced bleomycin-induced pulmonary fibrosis and lung dysfunction in mice. These effects may be due to this drug's inhibitory effect on NADPH oxidase and TGF-ß1 activities and its stimulatory effect on GST.


Asunto(s)
Bencilatos/uso terapéutico , Piperidinas/uso terapéutico , Fibrosis Pulmonar/tratamiento farmacológico , Animales , Bencilatos/farmacología , Bleomicina , Líquido del Lavado Bronquioalveolar/citología , Recuento de Células , Muerte Celular/efectos de los fármacos , Glutatión Transferasa/metabolismo , Hidroxiprolina/metabolismo , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Rendimiento Pulmonar/efectos de los fármacos , Masculino , Ratones , Miofibroblastos/efectos de los fármacos , NADPH Oxidasas/metabolismo , Oxígeno/sangre , Piperidinas/farmacología , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/complicaciones , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Factor de Crecimiento Transformador beta1/metabolismo , Capacidad Vital/efectos de los fármacos
13.
Sci Rep ; 4: 4510, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24676126

RESUMEN

We recently proposed that mepenzolate bromide (mepenzolate) would be therapeutically effective against chronic obstructive pulmonary disease (COPD) due to its both anti-inflammatory and bronchodilatory activities. In this study, we examined the benefits and adverse effects associated with different routes of mepenzolate administration in mice. Oral administration of mepenzolate caused not only bronchodilation but also decreased the severity of elastase-induced pulmonary emphysema; however, compared with the intratracheal route of administration, about 5000 times higher dose was required to achieve this effect. Intravenously or intrarectally administered mepenzolate also showed these pharmacological effects. The intratracheal route of mepenzolate administration, but not other routes, resulted in protective effects against elastase-induced pulmonary damage and bronchodilation at a much lower dose than that which affected defecation and heart rate. These results suggest that the pulmonary route of mepenzolate administration may be superior to other routes (oral, intravenous or intrarectal) to treat COPD patients.


Asunto(s)
Antiinflamatorios/administración & dosificación , Bencilatos/administración & dosificación , Piperidinas/administración & dosificación , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Resistencia de las Vías Respiratorias/efectos de los fármacos , Animales , Antiinflamatorios/efectos adversos , Antiinflamatorios/farmacocinética , Bencilatos/efectos adversos , Bencilatos/farmacocinética , Modelos Animales de Enfermedad , Vías de Administración de Medicamentos , Monitoreo de Drogas , Frecuencia Cardíaca/efectos de los fármacos , Masculino , Cloruro de Metacolina/efectos adversos , Ratones , Piperidinas/efectos adversos , Piperidinas/farmacocinética , Enfermedad Pulmonar Obstructiva Crónica/inducido químicamente , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...