Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Radiol ; 175: 111448, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38574510

RESUMEN

PURPOSE: Aim of the recent study is to point out a method to optimize quality of CT scans in oncological patients with port systems. This study investigates the potential of photon counting computed tomography (PCCT) for reduction of beam hardening artifacts caused by port-implants in chest imaging by means of spectral reconstructions. METHOD: In this retrospective single-center study, 8 ROIs for 19 spectral reconstructions (polyenergetic imaging, monoenergetic reconstructions from 40 to 190 keV as well as iodine maps and virtual non contrast (VNC)) of 49 patients with pectoral port systems undergoing PCCT of the chest for staging of oncologic disease were measured. Mean values and standard deviation (SD) Hounsfield unit measurements of port-chamber associated hypo- and hyperdense artifacts, bilateral muscles and vessels has been carried out. Also, a structured assessment of artifacts and imaging findings was performed by two radiologists. RESULTS: A significant association of keV with iodine contrast as well as artifact intensity was noted (all p < 0.001). In qualitative assessment, utilization of 120 keV monoenergetic reconstructions could reduce severe and pronounced artifacts completely, as compared to lower keV reconstructions (p < 0.001). Regarding imaging findings, no significant difference between monoenergetic reconstructions was noted (all p > 0.05). In cases with very high iodine concentrations in the subclavian vein, image distortions were noted at 40 keV images (p < 0.01). CONCLUSIONS: The present study demonstrates that PCCT derived spectral reconstructions can be used in oncological imaging of the thorax to reduce port-derived beam-hardening artefacts. When evaluating image data sets within a staging, it can be particularly helpful to consider the 120 keV VMIs, in which the artefacts are comparatively low.


Asunto(s)
Artefactos , Radiografía Torácica , Tomografía Computarizada por Rayos X , Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Tomografía Computarizada por Rayos X/métodos , Radiografía Torácica/métodos , Estudios Retrospectivos , Adulto , Anciano de 80 o más Años , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Fotones , Reproducibilidad de los Resultados
2.
Rofo ; 196(3): 262-272, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37944935

RESUMEN

With personalized tumor therapy, understanding and addressing the heterogeneity of malignant tumors is becoming increasingly important. Heterogeneity can be found within one lesion (intralesional) and between several tumor lesions emerging from one primary tumor (interlesional). The heterogeneous tumor cells may show a different response to treatment due to their biology, which in turn influences the outcome of the affected patients and the choice of therapeutic agents. Therefore, both intra- and interlesional heterogeneity should be addressed at the diagnostic stage. While genetic and biological heterogeneity are important parameters in molecular tumor characterization and in histopathology, they are not yet addressed routinely in medical imaging. This article summarizes the recently established markers for tumor heterogeneity in imaging as well as heterogeneous/mixed response to therapy. Furthermore, a look at emerging markers is given. The ultimate goal of this overview is to provide comprehensive understanding of tumor heterogeneity and its implications for radiology and for communication with interdisciplinary teams in oncology. KEY POINTS:: · Tumor heterogeneity can be described within one lesion (intralesional) or between several lesions (interlesional).. · The heterogeneous biology of tumor cells can lead to a mixed therapeutic response and should be addressed in diagnostics and the therapeutic regime.. · Quantitative image diagnostics can be enhanced using AI, improved histopathological methods, and liquid profiling in the future..


Asunto(s)
Neoplasias , Humanos , Neoplasias/diagnóstico por imagen , Neoplasias/genética , Neoplasias/terapia , Diagnóstico por Imagen , Oncología Médica , Radiografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...