Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Perfusion ; 39(1): 5-6, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37977208
2.
Perfusion ; 38(8): 1543-1544, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37769665
3.
Perfusion ; 38(1): 5, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36534482
4.
Perfusion ; 37(1): 3-4, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34949137
5.
Perfusion ; 36(1): 4-5, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33357093
7.
Cardiovasc Eng Technol ; 10(3): 520-530, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31187397

RESUMEN

PURPOSE: This study compares preload sensitivity of continuous flow (CF) VAD support to counterpulsation using the Windmill toroidal VAD (TORVAD). The TORVAD is a two-piston rotary pump that ejects 30 mL in early diastole, which increases cardiac output while preserving aortic valve flow. METHODS: Preload sensitivity was compared for CF vs. TORVAD counterpulse support using two lumped parameter models of the cardiovascular system: (1) an open-loop model of the systemic circulation was used to obtain ventricular function curves by isolating the systemic circulation and prescribing preload and afterload boundary conditions, and (2) a closed-loop model was used to test the physiological response to changes in pulmonary vascular resistance, systemic vascular resistance, heart rate, inotropic state, and blood volume. In the open-loop model, ventricular function curves (cardiac output vs left ventricular preload) are used to assess preload sensitivity. In the closed-loop model, left ventricular end systolic volume is used to assess the risk of left ventricular suction. RESULTS: At low preloads of 5 mmHg, CF support overpumps the circulation compared to TORVAD counterpulse support (cardiac output of 3.3 L/min for the healthy heart, 4.7 with CF support, and 3.5 with TORVAD counterpulse support) and has much less sensitivity than counterpulse support (0.342 L/min/mmHg for the healthy heart, 0.092 with CF support, and 0.306 with TORVAD counterpulse support). In the closed-loop model, when PVR is increased beyond 0.035 mmHg s/mL, CF support overpumps the circulation and causes ventricular suction events, but TORVAD counterpulse support maintains sufficient ventricular volume and does not cause suction. CONCLUSIONS: Counterpulse support with the TORVAD preserves aortic valve flow and provides physiological sensitivity across all preload conditions. This should prevent overpumping and minimize the risk of suction.


Asunto(s)
Contrapulsación/instrumentación , Insuficiencia Cardíaca/terapia , Corazón Auxiliar , Hemodinámica , Modelos Cardiovasculares , Función Ventricular Izquierda , Válvula Aórtica/fisiopatología , Gasto Cardíaco , Contrapulsación/efectos adversos , Insuficiencia Cardíaca/fisiopatología , Corazón Auxiliar/efectos adversos , Humanos , Ensayo de Materiales , Diseño de Prótesis , Resistencia Vascular
9.
Ann Thorac Surg ; 107(6): 1761-1767, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30586577

RESUMEN

BACKGROUND: Continuous-flow left ventricular assist devices (LVADs) cause blood trauma that includes von Willebrand factor degradation, platelet activation, and subclinical hemolysis. Blood trauma contributes to bleeding, thrombosis, and stroke, which cause significant morbidity and mortality. The TORVAD (Windmill Cardiovascular Systems, Inc, Austin, TX) is a first-of-its kind, toroidal-flow LVAD designed to minimize blood trauma. We tested the hypothesis that the TORVAD causes less blood trauma than the HeartMate II (Abbott Laboratories, Pleasanton, CA) LVAD. METHODS: Whole human blood was circulated for 6 hours in ex vivo circulatory loops with a HeartMate II (n = 8; 10,000 rpm, 70 ± 6 mm Hg, 4.0 ± 0.1 L/min) or TORVAD (n = 6; 144 rpm, 72 ± 0.0 mm Hg, 4.3 ± 0.0 L/min). von Willebrand factor degradation was quantified with electrophoresis and immunoblotting. Platelet activation was quantified by cluster of differentiation (CD) 41/61 enzyme-linked immunosorbent assay (ELISA). Hemolysis was quantified by plasma free hemoglobin ELISA. RESULTS: The TORVAD caused significantly less degradation of high-molecular-weight von Willebrand factor multimers (-10% ± 1% vs -21% ± 1%, p < 0.0001), accumulation of low-molecular-weight von Willebrand factor multimers (22% ± 2% vs 45% ± 2%, p < 0.0001), and accumulation of von Willebrand factor degradation fragments (7% ± 1% vs 25% ± 6%, p < 0.05) than the HeartMate II. The TORVAD did not activate platelets, whereas the HeartMate II caused significant platelet activation (CD 41/61: 645 ± 20 ng/mL vs 1,581 ± 150 ng/mL, p < 0.001; normal human CD 41/61, 593 ng/mL; range, 400 to 800 ng/mL). Similarly, the TORVAD caused minimal hemolysis, whereas the HeartMate II caused significant hemolysis (plasma free hemoglobin: 11 ± 2 vs 109 ± 10 mg/dL, p < 0.0001; normal human plasma free hemoglobin <4 mg/dL). CONCLUSIONS: The TORVAD design, with markedly lower shear stress and pulsatile flow, caused significantly less blood trauma than the HeartMate II. LVADs with reduced blood trauma are likely to improve clinical outcomes and expand LVAD therapy into patients with less advanced heart failure.


Asunto(s)
Corazón Auxiliar/efectos adversos , Hemólisis , Activación Plaquetaria , Factor de von Willebrand/metabolismo , Humanos , Diseño de Prótesis
11.
Perfusion ; 32(7): 521-522, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28985706

Asunto(s)
Sistema Solar
12.
ASAIO J ; 63(2): 198-206, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27832001

RESUMEN

This article provides an overview of the design challenges associated with scaling the low-shear pulsatile TORVAD ventricular assist device (VAD) for treating pediatric heart failure. A cardiovascular system model was used to determine that a 15 ml stroke volume device with a maximum flow rate of 4 L/min can provide full support to pediatric patients with body surface areas between 0.6 and 1.5 m. Low-shear stress in the blood is preserved as the device is scaled down and remains at least two orders of magnitude less than continuous flow VADs. A new magnetic linkage coupling the rotor and piston has been optimized using a finite element model (FEM) resulting in increased heat transfer to the blood while reducing the overall size of TORVAD. Motor FEM has also been used to reduce motor size and improve motor efficiency and heat transfer. FEM analysis predicts no more than 1°C temperature rise on any blood or tissue contacting surface of the device. The iterative computational approach established provides a methodology for developing a TORVAD platform technology with various device sizes for supporting the circulation of infants to adults.


Asunto(s)
Insuficiencia Cardíaca/terapia , Corazón Auxiliar , Diseño de Equipo , Análisis de Elementos Finitos , Humanos , Lactante , Modelos Cardiovasculares , Flujo Pulsátil
14.
Perfusion ; 31(1): 5, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26646259
17.
Perfusion ; 30(5): 355, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26060243
18.
J Extra Corpor Technol ; 47(4): 205-8, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26834281
19.
ASAIO J ; 61(3): 259-65, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25485562

RESUMEN

This article describes the stroke volume selection and operational design for the toroidal ventricular assist device (TORVAD), a synchronous, positive-displacement ventricular assist device (VAD). A lumped parameter model was used to simulate hemodynamics with the TORVAD compared with those under continuous-flow VAD support. Results from the simulation demonstrated that a TORVAD with a 30 ml stroke volume ejecting with an early diastolic counterpulse provides comparable systemic support to the HeartMate II (HMII) (cardiac output 5.7 L/min up from 3.1 L/min in simulated heart failure). By taking the advantage of synchronous pulsatility, the TORVAD delivers full hemodynamic support with nearly half the VAD flow rate (2.7 L/min compared with 5.3 L/min for the HMII) by allowing the left ventricle to eject during systole and thus preserving native aortic valve flow (3.0 L/min compared with 0.4 L/min for the HMII, down from 3.1 L/min at baseline). The TORVAD also preserves pulse pressure (26.7 mm Hg compared with 12.8 mm Hg for the HMII, down from 29.1 mm Hg at baseline). Preservation of aortic valve flow with synchronous pulsatile support could reduce the high incidence of aortic insufficiency and valve cusp fusion reported in patients supported with continuous-flow VADs.


Asunto(s)
Simulación por Computador , Corazón Auxiliar , Hemodinámica , Modelos Cardiovasculares , Humanos
20.
Perfusion ; 29(5): 383-4, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25161141
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA