Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 27(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36234983

RESUMEN

Abietic acid, a naturally occurring fir resin compound, that exhibits anti-inflammatory and wound-healing properties, was formulated into biocompatible emulgels based on stable microemulsions with the addition of a carbamate-containing surfactant and Carbopol® 940 gel. Various microemulsion and emulgel formulations were tested for antioxidant and wound-healing properties. The chemiluminescence method has shown that all compositions containing abietic acid have a high antioxidant activity. Using Strat-M® skin-modelling membrane, it was found out that emulgels significantly prolong the release of abietic acid. On Wistar rats, it was shown that microemulsions and emulgels containing 0.5% wt. of abietic acid promote the rapid healing of an incised wound and twofold tissue reinforcement compared to the untreated group, as documented by tensiometric wound suture-rupture assay. The high healing-efficiency is associated with a combination of antibacterial activity of the formulation components and the anti-inflammatory action of abietic acid.


Asunto(s)
Antioxidantes , Cicatrización de Heridas , Abietanos , Animales , Antibacterianos/farmacología , Antioxidantes/farmacología , Carbamatos , Emulsiones , Geles , Ratas , Ratas Wistar , Tensoactivos
2.
Langmuir ; 32(47): 12423-12433, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27592638

RESUMEN

Solutions of extended, flexible cylindrical micelles, often known as wormlike micelles, have great potential as the base for viscoelastic complex fluids in oil recovery, drilling, and lubrication. Here, we study the morphology and nanostructural characteristics of a model wormlike micellar fluid formed from erucyl amidopropyl betaine (EAPB) in water as a function of a diverse range of additives relevant to complex fluid formulation. The wormlike micellar dispersions are extremely oleo-responsive, with even as little as 0.1% hydrocarbon oil causing a significant disruption of the network and a decrease in zero-shear viscosity of around 100-fold. Simple salts have little effect on the local structure of the wormlike micelles but result in the formation of fractal networks at larger length scales, whereas even tiny amounts of small organic species such as phenol can cause unexpected phase transitions. When forming mixtures with other surfactants, a vast array of self-assembled structures are formed, from spheres to ellipsoids, lamellae, and vesicles, offering the ultimate sensitivity in designing formulations with specific nanostructural characteristics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA