Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Front Oncol ; 14: 1294252, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606108

RESUMEN

Purpose: Magnetic resonance imaging (MRI)-guided radiotherapy enables adaptive treatment plans based on daily anatomical changes and accurate organ visualization. However, the bias field artifact can compromise image quality, affecting diagnostic accuracy and quantitative analyses. This study aims to assess the impact of bias field correction on 0.35 T pelvis MRIs by evaluating clinical anatomy visualization and generative adversarial network (GAN) auto-segmentation performance. Materials and methods: 3D simulation MRIs from 60 prostate cancer patients treated on MR-Linac (0.35 T) were collected and preprocessed with the N4ITK algorithm for bias field correction. A 3D GAN architecture was trained, validated, and tested on 40, 10, and 10 patients, respectively, to auto-segment the organs at risk (OARs) rectum and bladder. The GAN was trained and evaluated either with the original or the bias-corrected MRIs. The Dice similarity coefficient (DSC) and 95th percentile Hausdorff distance (HD95th) were computed for the segmented volumes of each patient. The Wilcoxon signed-rank test assessed the statistical difference of the metrics within OARs, both with and without bias field correction. Five radiation oncologists blindly scored 22 randomly chosen patients in terms of overall image quality and visibility of boundaries (prostate, rectum, bladder, seminal vesicles) of the original and bias-corrected MRIs. Bennett's S score and Fleiss' kappa were used to assess the pairwise interrater agreement and the interrater agreement among all the observers, respectively. Results: In the test set, the GAN trained and evaluated on original and bias-corrected MRIs showed DSC/HD95th of 0.92/5.63 mm and 0.92/5.91 mm for the bladder and 0.84/10.61 mm and 0.83/9.71 mm for the rectum. No statistical differences in the distribution of the evaluation metrics were found neither for the bladder (DSC: p = 0.07; HD95th: p = 0.35) nor for the rectum (DSC: p = 0.32; HD95th: p = 0.63). From the clinical visual grading assessment, the bias-corrected MRI resulted mostly in either no change or an improvement of the image quality and visualization of the organs' boundaries compared with the original MRI. Conclusion: The bias field correction did not improve the anatomy visualization from a clinical point of view and the OARs' auto-segmentation outputs generated by the GAN.

2.
Radiat Oncol ; 19(1): 31, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448888

RESUMEN

BACKGROUND: Longitudinal assessments of apparent diffusion coefficients (ADCs) derived from diffusion-weighted imaging (DWI) during intracranial radiotherapy at magnetic resonance imaging-guided linear accelerators (MR-linacs) could enable early response assessment by tracking tumor diffusivity changes. However, DWI pulse sequences are currently unavailable in clinical practice at low-field MR-linacs. Quantifying the in vivo repeatability of ADC measurements is a crucial step towards clinical implementation of DWI sequences but has not yet been reported on for low-field MR-linacs. This study assessed ADC measurement repeatability in a phantom and in vivo at a 0.35 T MR-linac. METHODS: Eleven volunteers and a diffusion phantom were imaged on a 0.35 T MR-linac. Two echo-planar imaging DWI sequence variants, emphasizing high spatial resolution ("highRes") and signal-to-noise ratio ("highSNR"), were investigated. A test-retest study with an intermediate outside-scanner-break was performed to assess repeatability in the phantom and volunteers' brains. Mean ADCs within phantom vials, cerebrospinal fluid (CSF), and four brain tissue regions were compared to literature values. Absolute relative differences of mean ADCs in pre- and post-break scans were calculated for the diffusion phantom, and repeatability coefficients (RC) and relative RC (relRC) with 95% confidence intervals were determined for each region-of-interest (ROI) in volunteers. RESULTS: Both DWI sequence variants demonstrated high repeatability, with absolute relative deviations below 1% for water, dimethyl sulfoxide, and polyethylene glycol in the diffusion phantom. RelRCs were 7% [5%, 12%] (CSF; highRes), 12% [9%, 22%] (CSF; highSNR), 9% [8%, 12%] (brain tissue ROIs; highRes), and 6% [5%, 7%] (brain tissue ROIs; highSNR), respectively. ADCs measured with the highSNR variant were consistent with literature values for volunteers, while smaller mean values were measured for the diffusion phantom. Conversely, the highRes variant underestimated ADCs compared to literature values, indicating systematic deviations. CONCLUSIONS: High repeatability of ADC measurements in a diffusion phantom and volunteers' brains were measured at a low-field MR-linac. The highSNR variant outperformed the highRes variant in accuracy and repeatability, at the expense of an approximately doubled voxel volume. The observed high in vivo repeatability confirms the potential utility of DWI at low-field MR-linacs for early treatment response assessment.


Asunto(s)
Encéfalo , Imagen de Difusión por Resonancia Magnética , Humanos , Encéfalo/diagnóstico por imagen , Fantasmas de Imagen , Difusión , Dimetilsulfóxido
3.
Phys Imaging Radiat Oncol ; 29: 100562, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38463219

RESUMEN

Background and purpose: Ultra-hypofractionated online adaptive magnetic resonance-guided radiotherapy (MRgRT) is promising for prostate cancer. However, the impact of online adaptation on target coverage and organ-at-risk (OAR) sparing at the level of accumulated dose has not yet been reported. Using deformable image registration (DIR)-based accumulation, we compared the delivered adapted dose with the simulated non-adapted dose. Materials and methods: Twenty-three prostate cancer patients treated at two clinics with 0.35 T magnetic resonance-guided linear accelerator (MR-linac) following the same treatment protocol (5 × 7.5 Gy with urethral sparing and daily adaptation) were included. The fraction MR images were deformably registered to the planning MR image. Both non-adapted and adapted fraction doses were accumulated with the corresponding vector fields. Two DIR approaches were implemented. PTV* (planning target volume minus urethra+2mm) D95%, CTV* (clinical target volume minus urethra) D98%, and OARs (urethra+2mm, bladder, and rectum) D0.2cc, were evaluated. Statistical significance was inferred from a two-tailed Wilcoxon signed-rank test (p < 0.05). Results: Normalized to the baseline, the accumulated PTV* D95% increased significantly by 2.7 % ([1.5, 4.3]%) through adaptation, and the CTV* D98% by 1.2 % ([0.1, 1.7]%). For the OARs after adaptation, accumulated bladder D0.2cc decreased by 0.4 % ([-1.2, 0.4]%), urethra+2mmD0.2cc by 0.8 % ([-1.6, -0.1]%), while rectum D0.2cc increased by 2.6 % ([1.2, 4.9]%). For all patients, rectum D0.2cc was still below the clinical constraint. Results of both DIR approaches differed on average by less than 0.2 %. Conclusions: Online adaptation in MRgRT improved target coverage and OARs sparing at the level of accumulated dose.

4.
Phys Med ; 119: 103297, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38310680

RESUMEN

PURPOSE: Manual recontouring of targets and Organs At Risk (OARs) is a time-consuming and operator-dependent task. We explored the potential of Generative Adversarial Networks (GAN) to auto-segment the rectum, bladder and femoral heads on 0.35T MRIs to accelerate the online MRI-guided-Radiotherapy (MRIgRT) workflow. METHODS: 3D planning MRIs from 60 prostate cancer patients treated with 0.35T MR-Linac were collected. A 3D GAN architecture and its equivalent 2D version were trained, validated and tested on 40, 10 and 10 patients respectively. The volumetric Dice Similarity Coefficient (DSC) and 95th percentile Hausdorff Distance (HD95th) were computed against expert drawn ground-truth delineations. The networks were also validated on an independent external dataset of 16 patients. RESULTS: In the internal test set, the 3D and 2D GANs showed DSC/HD95th of 0.83/9.72 mm and 0.81/10.65 mm for the rectum, 0.92/5.91 mm and 0.85/15.72 mm for the bladder, and 0.94/3.62 mm and 0.90/9.49 mm for the femoral heads. In the external test set, the performance was 0.74/31.13 mm and 0.72/25.07 mm for the rectum, 0.92/9.46 mm and 0.88/11.28 mm for the bladder, and 0.89/7.00 mm and 0.88/10.06 mm for the femoral heads. The 3D and 2D GANs required on average 1.44 s and 6.59 s respectively to generate the OARs' volumetric segmentation for a single patient. CONCLUSIONS: The proposed 3D GAN auto-segments pelvic OARs with high accuracy on 0.35T, in both the internal and the external test sets, outperforming its 2D equivalent in both segmentation robustness and volume generation time.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Órganos en Riesgo , Masculino , Humanos , Órganos en Riesgo/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Pelvis/diagnóstico por imagen , Imagen por Resonancia Magnética
5.
Radiat Oncol ; 19(1): 3, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191431

RESUMEN

OBJECTIVES: Deep learning-based auto-segmentation of head and neck cancer (HNC) tumors is expected to have better reproducibility than manual delineation. Positron emission tomography (PET) and computed tomography (CT) are commonly used in tumor segmentation. However, current methods still face challenges in handling whole-body scans where a manual selection of a bounding box may be required. Moreover, different institutions might still apply different guidelines for tumor delineation. This study aimed at exploring the auto-localization and segmentation of HNC tumors from entire PET/CT scans and investigating the transferability of trained baseline models to external real world cohorts. METHODS: We employed 2D Retina Unet to find HNC tumors from whole-body PET/CT and utilized a regular Unet to segment the union of the tumor and involved lymph nodes. In comparison, 2D/3D Retina Unets were also implemented to localize and segment the same target in an end-to-end manner. The segmentation performance was evaluated via Dice similarity coefficient (DSC) and Hausdorff distance 95th percentile (HD95). Delineated PET/CT scans from the HECKTOR challenge were used to train the baseline models by 5-fold cross-validation. Another 271 delineated PET/CTs from three different institutions (MAASTRO, CRO, BERLIN) were used for external testing. Finally, facility-specific transfer learning was applied to investigate the improvement of segmentation performance against baseline models. RESULTS: Encouraging localization results were observed, achieving a maximum omnidirectional tumor center difference lower than 6.8 cm for external testing. The three baseline models yielded similar averaged cross-validation (CV) results with a DSC in a range of 0.71-0.75, while the averaged CV HD95 was 8.6, 10.7 and 9.8 mm for the regular Unet, 2D and 3D Retina Unets, respectively. More than a 10% drop in DSC and a 40% increase in HD95 were observed if the baseline models were tested on the three external cohorts directly. After the facility-specific training, an improvement in external testing was observed for all models. The regular Unet had the best DSC (0.70) for the MAASTRO cohort, and the best HD95 (7.8 and 7.9 mm) in the MAASTRO and CRO cohorts. The 2D Retina Unet had the best DSC (0.76 and 0.67) for the CRO and BERLIN cohorts, and the best HD95 (12.4 mm) for the BERLIN cohort. CONCLUSION: The regular Unet outperformed the other two baseline models in CV and most external testing cohorts. Facility-specific transfer learning can potentially improve HNC segmentation performance for individual institutions, where the 2D Retina Unets could achieve comparable or even better results than the regular Unet.


Asunto(s)
Aprendizaje Profundo , Neoplasias de Cabeza y Cuello , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Reproducibilidad de los Resultados , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Tomografía de Emisión de Positrones
6.
Med Phys ; 51(3): 1674-1686, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38224324

RESUMEN

BACKGROUND: Cone beam computed tomography (CBCT) is widely used in many medical fields. However, conventional CBCT circular scans suffer from cone beam (CB) artifacts that limit the quality and reliability of the reconstructed images due to incomplete data. PURPOSE: Saddle trajectories in theory might be able to improve the CBCT image quality by providing a larger region with complete data. Therefore, we investigated the feasibility and performance of saddle trajectory CBCT scans and compared them to circular trajectory scans. METHODS: We performed circular and saddle trajectory scans using a novel robotic CBCT scanner (Mobile ImagingRing (IRm); medPhoton, Salzburg, Austria). For the saddle trajectory, the gantry executed yaw motion up to ± 10 ∘ $\pm 10^{\circ }$ using motorized wheels driving on the floor. An infrared (IR) tracking device with reflective markers was used for online geometric calibration correction (mainly floor unevenness). All images were reconstructed using penalized least-squares minimization with the conjugate gradient algorithm from RTK with 0.5 × 0.5 × 0.5 mm 3 $0.5 \times 0.5\times 0.5 \text{ mm}^3$ voxel size. A disk phantom and an Alderson phantom were scanned to assess the image quality. Results were correlated with the local incompleteness value represented by tan ( ψ ) $\tan (\psi)$ , which was calculated at each voxel as a function of the source trajectory and the voxel's 3D coordinates. We assessed the magnitude of CB artifacts using the full width half maximum (FWHM) of each disk profile in the axial center of the reconstructed images. Spatial resolution was also quantified by the modulation transfer function at 10% (MTF10). RESULTS: When using the saddle trajectory, the region without CB artifacts was increased from 43 to 190 mm in the SI direction compared to the circular trajectory. This region coincided with low values for tan ( ψ ) $\tan (\psi)$ . When tan ( ψ ) $\tan (\psi)$ was larger than 0.02, we found there was a linear relationship between the FWHM and tan ( ψ ) $\tan (\psi)$ . For the saddle, IR tracking allowed the increase of MTF10 from 0.37 to 0.98 lp/mm. CONCLUSIONS: We achieved saddle trajectory CBCT scans with a novel CBCT system combined with IR tracking. The results show that the saddle trajectory provides a larger region with reliable reconstruction compared to the circular trajectory. The proposed method can be used to evaluate other non-circular trajectories.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Tomografía Computarizada de Haz Cónico Espiral , Tomografía Computarizada de Haz Cónico Espiral/métodos , Artefactos , Reproducibilidad de los Resultados , Tomografía Computarizada de Haz Cónico/métodos , Algoritmos , Fantasmas de Imagen , Procesamiento de Imagen Asistido por Computador/métodos
7.
Med Phys ; 51(3): 1957-1973, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37683107

RESUMEN

BACKGROUND: Real-time tumor tracking is one motion management method to address motion-induced uncertainty. To date, fiducial markers are often required to reliably track lung tumors with X-ray imaging, which carries risks of complications and leads to prolonged treatment time. A markerless tracking approach is thus desirable. Deep learning-based approaches have shown promise for markerless tracking, but systematic evaluation and procedures to investigate applicability in individual cases are missing. Moreover, few efforts have been made to provide bounding box prediction and mask segmentation simultaneously, which could allow either rigid or deformable multi-leaf collimator tracking. PURPOSE: The purpose of this study was to implement a deep learning-based markerless lung tumor tracking model exploiting patient-specific training which outputs both a bounding box and a mask segmentation simultaneously. We also aimed to compare the two kinds of predictions and to implement a specific procedure to understand the feasibility of markerless tracking on individual cases. METHODS: We first trained a Retina U-Net baseline model on digitally reconstructed radiographs (DRRs) generated from a public dataset containing 875 CT scans and corresponding lung nodule annotations. Afterwards, we used an independent cohort of 97 lung patients to develop a patient-specific refinement procedure. In order to determine the optimal hyperparameters for automatic patient-specific training, we selected 13 patients for validation where the baseline model predicted a bounding box on planning CT (PCT)-DRR with intersection over union (IoU) with the ground-truth higher than 0.7. The final test set contained the remaining 84 patients with varying PCT-DRR IoU. For each testing patient, the baseline model was refined on the PCT-DRR to generate a patient-specific model, which was then tested on a separate 10-phase 4DCT-DRR to mimic the intrafraction motion during treatment. A template matching algorithm served as benchmark model. The testing results were evaluated by four metrics: the center of mass (COM) error and the Dice similarity coefficient (DSC) for segmentation masks, and the center of box (COB) error and the DSC for bounding box detections. Performance was compared to the benchmark model including statistical testing for significance. RESULTS: A PCT-DRR IoU value of 0.2 was shown to be the threshold dividing inconsistent (68%) and consistent (100%) success (defined as mean bounding box DSC > 0.6) of PS models on 4DCT-DRRs. Thirty-seven out of the eighty-four testing cases had a PCT-DRR IoU above 0.2. For these 37 cases, the mean COM error was 2.6 mm, the mean segmentation DSC was 0.78, the mean COB error was 2.7 mm, and the mean box DSC was 0.83. Including the validation cases, the model was applicable to 50 out of 97 patients when using the PCT-DRR IoU threshold of 0.2. The inference time per frame was 170 ms. The model outperformed the benchmark model on all metrics, and the comparison was significant (p < 0.001) over the 37 PCT-DRR IoU > 0.2 cases, but not over the undifferentiated 84 testing cases. CONCLUSIONS: The implemented patient-specific refinement approach based on a pre-trained baseline model was shown to be applicable to markerless tumor tracking in simulated radiographs for lung cases.


Asunto(s)
Aprendizaje Profundo , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Pulmón , Algoritmos , Marcadores Fiduciales , Procesamiento de Imagen Asistido por Computador
8.
Med Phys ; 51(3): 1899-1917, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37665948

RESUMEN

BACKGROUND: Current commercially available hybrid magnetic resonance linear accelerators (MR-Linac) use 2D+t cine MR imaging to provide intra-fractional motion monitoring. However, given the limited temporal resolution of cine MR imaging, target intra-frame motion deterioration effects, resulting in effective time latency and motion artifacts in the image domain, can be appreciable, especially in the case of fast breathing. PURPOSE: The aim of this work is to investigate intra-frame motion deterioration effects in MR-guided radiotherapy (MRgRT) by simulating the motion-corrupted image acquisition, and to explore the feasibility of deep-learning-based compensation approaches, relying on the intra-frame motion information which is spatially and temporally encoded in the raw data (k-space). METHODS: An intra-frame motion model was defined to simulate motion-corrupted MR images, with 4D anthropomorphic digital phantoms being exploited to provide ground truth 2D+t cine MR sequences. A total number of 10 digital phantoms were generated for lung cancer patients, with randomly selected eight patients for training or validation and the remaining two for testing. The simulation code served as the data generator, and a dedicated motion pattern perturbation scheme was proposed to build the intra-frame motion database, where three degrees of freedom were designed to guarantee the diversity of intra-frame motion trajectories, enabling a thorough exploration in the domain of the potential anatomical structure positions. U-Nets with three types of loss functions: L1 or L2 loss defined in image or Fourier domain, referred to as NNImgLoss-L1 , NNFloss-L1 and NNL2-Loss were trained to extract information from the motion-corrupted image and used to estimate the ground truth final-position image, corresponding to the end of the acquisition. Images before and after compensation were evaluated in terms of (i) image mean-squared error (MSE) and mean absolute error (MAE), and (ii) accuracy of gross tumor volume (GTV) contouring, based on optical-flow image registration. RESULTS: Image degradation caused by intra-frame motion was observed: for a linearly and fully acquired Cartesian readout k-space trajectory, intra-frame motion resulted in an imaging latency of approximately 50% of the acquisition time; in comparison, the motion artifacts exhibited only a negligible contribution to the overall geometric errors. All three compensation models led to a decrease in image MSE/MAE and GTV position offset compared to the motion-corrupted image. In the investigated testing dataset for GTV contouring, the average dice similarity coefficients (DSC) improved from 88% to 96%, and the 95th percentile Hausdorff distance (HD95 ) dropped from 4.8 mm to 2.1 mm. Different models showed slight performance variations across different intra-frame motion amplitude categories: NNImgLoss-L1 excelled for small/medium amplitudes, whereas NNFloss-L1 demonstrated higher DSC median values at larger amplitudes. The saliency maps of the motion-corrupted image highlighted the major contribution of the later acquired k-space data, as well as the edges of the moving anatomical structures at their final positions, during the model inference stage. CONCLUSIONS: Our results demonstrate the deep-learning-based approaches have the potential to compensate for intra-frame motion by utilizing the later acquired data to drive the convergence of the earlier acquired k-space components.


Asunto(s)
Aprendizaje Profundo , Neoplasias Pulmonares , Radioterapia Guiada por Imagen , Humanos , Radioterapia Guiada por Imagen/métodos , Imagen por Resonancia Magnética , Movimiento (Física) , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia
9.
Radiother Oncol ; 190: 109970, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37898437

RESUMEN

MRI-guided radiotherapy (MRIgRT) is a highly complex treatment modality, allowing adaptation to anatomical changes occurring from one treatment day to the other (inter-fractional), but also to motion occurring during a treatment fraction (intra-fractional). In this vision paper, we describe the different steps of intra-fractional motion management during MRIgRT, from imaging to beam adaptation, and the solutions currently available both clinically and at a research level. Furthermore, considering the latest developments in the literature, a workflow is foreseen in which motion-induced over- and/or under-dosage is compensated in 3D, with minimal impact to the radiotherapy treatment time. Considering the time constraints of real-time adaptation, a particular focus is put on artificial intelligence (AI) solutions as a fast and accurate alternative to conventional algorithms.


Asunto(s)
Inteligencia Artificial , Radioterapia Guiada por Imagen , Humanos , Radioterapia Guiada por Imagen/métodos , Movimiento (Física) , Imagen por Resonancia Magnética/métodos , Algoritmos , Planificación de la Radioterapia Asistida por Computador/métodos
10.
BJR Open ; 5(1): 20230030, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37942500

RESUMEN

This review article visits the current state of artificial intelligence (AI) in radiotherapy clinical practice. We will discuss how AI has a place in the modern radiotherapy workflow at the level of automatic segmentation and planning, two applications which have seen real-work implementation. A special emphasis will be placed on the role AI can play in online adaptive radiotherapy, such as performed at MR-linacs, where online plan adaptation is a procedure which could benefit from automation to reduce on-couch time for patients. Pseudo-CT generation and AI for motion tracking will be introduced in the scope of online adaptive radiotherapy as well. We further discuss the use of AI for decision-making and response assessment, for example for personalized prescription and treatment selection, risk stratification for outcomes and toxicities, and AI for quantitative imaging and response assessment. Finally, the challenges of generalizability and ethical aspects will be covered. With this, we provide a comprehensive overview of the current and future applications of AI in radiotherapy.

11.
Phys Imaging Radiat Oncol ; 28: 100498, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37928618

RESUMEN

Background and purpose: Automation is desirable for organ segmentation in radiotherapy. This study compared deep learning methods for auto-segmentation of organs-at-risk (OARs) and clinical target volume (CTV) in prostate cancer patients undergoing fractionated magnetic resonance (MR)-guided adaptive radiation therapy. Models predicting dense displacement fields (DDFMs) between planning and fraction images were compared to patient-specific (PSM) and baseline (BM) segmentation models. Materials and methods: A dataset of 92 patients with planning and fraction MR images (MRIs) from two institutions were used. DDFMs were trained to predict dense displacement fields (DDFs) between the planning and fraction images, which were subsequently used to propagate the planning contours of the bladder, rectum, and CTV to the daily MRI. The training was performed either with true planning-fraction image pairs or with planning images and their counterparts deformed by known DDFs. The BMs were trained on 53 planning images, while to generate PSMs, the BMs were fine-tuned using the planning image of a given single patient. The evaluation included Dice similarity coefficient (DSC), the average (HDavg) and the 95th percentile (HD95) Hausdorff distance (HD). Results: The DDFMs with DSCs for bladder/rectum of 0.76/0.76 performed worse than PSMs (0.91/0.90) and BMs (0.89/0.88). The same trend was observed for HDs. For CTV, DDFM and PSM performed similarly yielding DSCs of 0.87 and 0.84, respectively. Conclusions: DDFMs were found suitable for CTV delineation after rigid alignment. However, for OARs they were outperformed by PSMs, as they predicted only limited deformations even in the presence of substantial anatomical changes.

12.
Med Phys ; 50(11): 7083-7092, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37782077

RESUMEN

BACKGROUND: Magnetic resonance imaging (MRI)-guided radiotherapy with multileaf collimator (MLC)-tracking is a promising technique for intra-fractional motion management, achieving high dose conformality without prolonging treatment times. To improve beam-target alignment, the geometric error due to system latency should be reduced by using temporal prediction. PURPOSE: To experimentally compare linear regression (LR) and long-short-term memory (LSTM) motion prediction models for MLC-tracking on an MRI-linac using multiple patient-derived traces with different complexities. METHODS: Experiments were performed on a prototype 1.0 T MRI-linac capable of MLC-tracking. A motion phantom was programmed to move a target in superior-inferior (SI) direction according to eight lung cancer patient respiratory motion traces. Target centroid positions were localized from sagittal 2D cine MRIs acquired at 4 Hz using a template matching algorithm. The centroid positions were input to one of four motion prediction models. We used (1) a LSTM network which had been optimized in a previous study on patient data from another cohort (offline LSTM). We also used (2) the same LSTM model as a starting point for continuous re-optimization of its weights during the experiment based on recent motion (offline+online LSTM). Furthermore, we implemented (3) a continuously updated LR model, which was solely based on recent motion (online LR). Finally, we used (4) the last available target centroid without any changes as a baseline (no-predictor). The predictions of the models were used to shift the MLC aperture in real-time. An electronic portal imaging device (EPID) was used to visualize the target and MLC aperture during the experiments. Based on the EPID frames, the root-mean-square error (RMSE) between the target and the MLC aperture positions was used to assess the performance of the different motion predictors. Each combination of motion trace and prediction model was repeated twice to test stability, for a total of 64 experiments. RESULTS: The end-to-end latency of the system was measured to be (389 ± 15) ms and was successfully mitigated by both LR and LSTM models. The offline+online LSTM was found to outperform the other models for all investigated motion traces. It obtained a median RMSE over all traces of (2.8 ± 1.3) mm, compared to the (3.2 ± 1.9) mm of the offline LSTM, the (3.3 ± 1.4) mm of the online LR and the (4.4 ± 2.4) mm when using the no-predictor. According to statistical tests, differences were significant (p-value <0.05) among all models in a pair-wise comparison, but for the offline LSTM and online LR pair. The offline+online LSTM was found to be more reproducible than the offline LSTM and the online LR with a maximum deviation in RMSE between two measurements of 10%. CONCLUSIONS: This study represents the first experimental comparison of different prediction models for MRI-guided MLC-tracking using several patient-derived respiratory motion traces. We have shown that among the investigated models, continuously re-optimized LSTM networks are the most promising to account for the end-to-end system latency in MRI-guided radiotherapy with MLC-tracking.


Asunto(s)
Neoplasias Pulmonares , Humanos , Modelos Lineales , Movimiento (Física) , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Algoritmos , Fantasmas de Imagen , Imagen por Resonancia Magnética , Planificación de la Radioterapia Asistida por Computador/métodos
13.
Phys Med Biol ; 68(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37669669

RESUMEN

Objective.To experimentally validate a method to create continuous time-resolved estimated synthetic 4D-computed tomography datasets (tresCTs) based on orthogonal cine MRI data for lung cancer treatments at a magnetic resonance imaging (MRI) guided linear accelerator (MR-linac).Approach.A breathing porcine lung phantom was scanned at a CT scanner and 0.35 T MR-linac. Orthogonal cine MRI series (sagittal/coronal orientation) at 7.3 Hz, intersecting tumor-mimicking gelatin nodules, were deformably registered to mid-exhale 3D-CT and 3D-MRI datasets. The time-resolved deformation vector fields were extrapolated to 3D and applied to a reference synthetic 3D-CT image (sCTref), while accounting for breathing phase-dependent lung density variations, to create 82 s long tresCTs at 3.65 Hz. Ten tresCTs were created for ten tracked nodules with different motion patterns in two lungs. For each dataset, a treatment plan was created on the mid-exhale phase of a measured ground truth (GT) respiratory-correlated 4D-CT dataset with the tracked nodule as gross tumor volume (GTV). Each plan was recalculated on the GT 4D-CT, randomly sampled tresCT, and static sCTrefimages. Dose distributions for corresponding breathing phases were compared in gamma (2%/2 mm) and dose-volume histogram (DVH) parameter analyses.Main results.The mean gamma pass rate between all tresCT and GT 4D-CT dose distributions was 98.6%. The mean absolute relative deviations of the tresCT with respect to GT DVH parameters were 1.9%, 1.0%, and 1.4% for the GTVD98%,D50%, andD2%, respectively, 1.0% for the remaining nodulesD50%, and 1.5% for the lungV20Gy. The gamma pass rate for the tresCTs was significantly larger (p< 0.01), and the GTVD50%deviations with respect to the GT were significantly smaller (p< 0.01) than for the sCTref.Significance.The results suggest that tresCTs could be valuable for time-resolved reconstruction and intrafractional accumulation of the dose to the GTV for lung cancer patients treated at MR-linacs in the future.


Asunto(s)
Neoplasias Pulmonares , Humanos , Animales , Porcinos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Imagen por Resonancia Magnética , Pulmón , Tomografía Computarizada Cuatridimensional/métodos , Imagen por Resonancia Cinemagnética , Planificación de la Radioterapia Asistida por Computador/métodos
14.
Phys Imaging Radiat Oncol ; 27: 100482, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37680905

RESUMEN

Background and purpose: In radiotherapy, dose calculations based on 4D cone beam CTs (4DCBCTs) require image intensity corrections. This retrospective study compared the dose calculation accuracy of a deep learning, projection-based scatter correction workflow (ScatterNet), to slower workflows: conventional 4D projection-based scatter correction (CBCTcor) and a deformable image registration (DIR)-based method (4DvCT). Materials and methods: For 26 lung cancer patients, planning CTs (pCTs), 4DCTs and CBCT projections were available. ScatterNet was trained with pairs of raw and corrected CBCT projections. Corrected projections from ScatterNet and the conventional workflow were reconstructed using MA-ROOSTER, yielding 4DCBCTSN and 4DCBCTcor. The 4DvCT was generated by 4DCT to 4DCBCT DIR, as part of the 4DCBCTcor workflow. Robust intensity modulated proton therapy treatment plans were created on free-breathing pCTs. 4DCBCTSN was compared to 4DCBCTcor and the 4DvCT in terms of image quality and dose calculation accuracy (dose-volume-histogram parameters and 3%/3mm gamma analysis). Results: 4DCBCTSN resulted in an average mean absolute error of 87HU and 102HU when compared to 4DCBCTcor and 4DvCT respectively. High agreement was observed in targets with median dose differences of 0.4Gy (4DCBCTSN-4DCBCTcor) and 0.3Gy (4DCBCTSN-4DvCT). The gamma analysis showed high average 3%/3mm pass rates of 96% for both 4DCBCTSN vs. 4DCBCTcor and 4DCBCTSN vs. 4DvCT. Conclusions: Accurate 4D dose calculations are feasible for lung cancer patients using ScatterNet for 4DCBCT correction. Average scatter correction times could be reduced from 10min (4DCBCTcor) to 3.9s, showing the clinical suitability of the proposed deep learning-based method.

15.
Radiat Oncol ; 18(1): 135, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37574549

RESUMEN

BACKGROUND AND PURPOSE: Magnetic resonance imaging guided radiotherapy (MRgRT) offers treatment plan adaptation to the anatomy of the day. In the current MRgRT workflow, this requires the time consuming and repetitive task of manual delineation of organs-at-risk (OARs), which is also prone to inter- and intra-observer variability. Therefore, deep learning autosegmentation (DLAS) is becoming increasingly attractive. No investigation of its application to OARs in thoracic magnetic resonance images (MRIs) from MRgRT has been done so far. This study aimed to fill this gap. MATERIALS AND METHODS: 122 planning MRIs from patients treated at a 0.35 T MR-Linac were retrospectively collected. Using an 80/19/23 (training/validation/test) split, individual 3D U-Nets for segmentation of the left lung, right lung, heart, aorta, spinal canal and esophagus were trained. These were compared to the clinically used contours based on Dice similarity coefficient (DSC) and Hausdorff distance (HD). They were also graded on their clinical usability by a radiation oncologist. RESULTS: Median DSC was 0.96, 0.96, 0.94, 0.90, 0.88 and 0.78 for left lung, right lung, heart, aorta, spinal canal and esophagus, respectively. Median 95th percentile values of the HD were 3.9, 5.3, 5.8, 3.0, 2.6 and 3.5 mm, respectively. The physician preferred the network generated contours over the clinical contours, deeming 85 out of 129 to not require any correction, 25 immediately usable for treatment planning, 15 requiring minor and 4 requiring major corrections. CONCLUSIONS: We trained 3D U-Nets on clinical MRI planning data which produced accurate delineations in the thoracic region. DLAS contours were preferred over the clinical contours.


Asunto(s)
Aprendizaje Profundo , Neoplasias Pulmonares , Humanos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Órganos en Riesgo , Procesamiento de Imagen Asistido por Computador/métodos
16.
Radiat Oncol ; 18(1): 58, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37013541

RESUMEN

BACKGROUND: Hybrid devices that combine radiation therapy and MR-imaging have been introduced in the clinical routine for the treatment of lung cancer. This opened up not only possibilities in terms of accurate tumor tracking, dose delivery and adapted treatment planning, but also functional lung imaging. The aim of this study was to show the feasibility of Non-uniform Fourier Decomposition (NuFD) MRI at a 0.35 T MR-Linac as a potential treatment response assessment tool, and propose two signal normalization strategies for enhancing the reproducibility of the results. METHODS: Ten healthy volunteers (median age 28 ± 8 years, five female, five male) were repeatedly scanned at a 0.35 T MR-Linac using an optimized 2D+t balanced steady-state free precession (bSSFP) sequence for two coronal slice positions. Image series were acquired in normal free breathing with breaks inside and outside the scanner as well as deep and shallow breathing. Ventilation- and perfusion-weighted maps were generated for each image series using NuFD. For intra-volunteer ventilation map reproducibility, a normalization factor was defined based on the linear correlation of the ventilation signal and diaphragm position of each scan as well as the diaphragm motion amplitude of a reference scan. This allowed for the correction of signal dependency on the diaphragm motion amplitude, which varies with breathing patterns. The second strategy, which can be used for ventilation and perfusion, eliminates the dependency on the signal amplitude by normalizing the ventilation/perfusion maps with the average ventilation/perfusion signal within a selected region-of-interest (ROI). The position and size dependency of this ROI was analyzed. To evaluate the performance of both approaches, the normalized ventilation/perfusion-weighted maps were compared and the deviation of the mean ventilation/perfusion signal from the reference was calculated for each scan. Wilcoxon signed-rank tests were performed to test whether the normalization methods can significantly improve the reproducibility of the ventilation/perfusion maps. RESULTS: The ventilation- and perfusion-weighted maps generated with the NuFD algorithm demonstrated a mostly homogenous distribution of signal intensity as expected for healthy volunteers regardless of the breathing maneuver and slice position. Evaluation of the ROI's size and position dependency showed small differences in the performance. Applying both normalization strategies improved the reproducibility of the ventilation by reducing the median deviation of all scans to 9.1%, 5.7% and 8.6% for the diaphragm-based, the best and worst performing ROI-based normalization, respectively, compared to 29.5% for the non-normalized scans. The significance of this improvement was confirmed by the Wilcoxon signed rank test with [Formula: see text] at [Formula: see text]. A comparison of the techniques against each other revealed a significant difference in the performance between best ROI-based normalization and worst ROI ([Formula: see text]) and between best ROI-based normalization and scaling factor ([Formula: see text]), but not between scaling factor and worst ROI ([Formula: see text]). Using the ROI-based approach for the perfusion-maps, the uncorrected deviation of 10.2% was reduced to 5.3%, which was shown to be significant ([Formula: see text]). CONCLUSIONS: Using NuFD for non-contrast enhanced functional lung MRI at a 0.35 T MR-Linac is feasible and produces plausible ventilation- and perfusion-weighted maps for volunteers without history of chronic pulmonary diseases utilizing different breathing patterns. The reproducibility of the results in repeated scans significantly benefits from the introduction of the two normalization strategies, making NuFD a potential candidate for fast and robust early treatment response assessment of lung cancer patients during MR-guided radiotherapy.


Asunto(s)
Neoplasias Pulmonares , Pulmón , Imagen por Resonancia Magnética , Imagen de Perfusión , Humanos , Estudios de Factibilidad , Reproducibilidad de los Resultados , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Ventilación , Pulmón/diagnóstico por imagen , Masculino , Femenino , Adulto , Imagen por Resonancia Magnética/métodos , Imagen de Perfusión/métodos , Respiración
17.
Med Phys ; 50(5): 2625-2636, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36810708

RESUMEN

BACKGROUND: Stereotactic body radiation therapy (SBRT) of central lung tumors with photon or proton therapy has a risk of increased toxicity. Treatment planning studies comparing accumulated doses for state-of-the-art treatment techniques, such as MR-guided radiotherapy (MRgRT) and intensity modulated proton therapy (IMPT), are currently lacking. PURPOSE: We conducted a comparison of accumulated doses for MRgRT, robustly optimized non-adaptive IMPT, and online adaptive IMPT for central lung tumors. A special focus was set on analyzing the accumulated doses to the bronchial tree, a parameter linked to high-grade toxicities. METHODS: Data of 18 early-stage central lung tumor patients, treated at a 0.35 T MR-linac in eight or five fractions, were analyzed. Three gated treatment scenarios were compared: (S1) online adaptive MRgRT, (S2) non-adaptive IMPT, and (S3) online adaptive IMPT. The treatment plans were recalculated or reoptimized on the daily imaging data acquired during MRgRT, and accumulated over all treatment fractions. Accumulated dose-volume histogram (DVH) parameters of the gross tumor volume (GTV), lung, heart, and organs-at-risk (OARs) within 2 cm of the planning target volume (PTV) were extracted for each scenario and compared in Wilcoxon signed-rank tests between S1 & S2, and S1 & S3. RESULTS: The accumulated GTV D98% was above the prescribed dose for all patients and scenarios. Significant reductions (p < 0.05) of the mean ipsilateral lung dose (S2: -8%; S3: -23%) and mean heart dose (S2: -79%; S3: -83%) were observed for both proton scenarios compared to S1. The bronchial tree D0.1cc was significantly lower for S3 (S1: 48.1 Gy; S3: 39.2 Gy; p = 0.005), but not significantly different for S2 (S2: 45.0 Gy; p = 0.094), compared to S1. The D0.1cc for S2 and S3 compared to S1 was significantly (p < 0.05) smaller for OARs within 1-2 cm of the PTV (S1: 30.2 Gy; S2: 24.6 Gy; S3: 23.1 Gy), but not significantly different for OARs within 1 cm of the PTV. CONCLUSIONS: A significant dose sparing potential of non-adaptive and online adaptive proton therapy compared to MRgRT for OARs in close, but not direct proximity of central lung tumors was identified. The near-maximum dose to the bronchial tree was not significantly different for MRgRT and non-adaptive IMPT. Online adaptive IMPT achieved significantly lower doses to the bronchial tree compared to MRgRT.


Asunto(s)
Neoplasias Pulmonares , Terapia de Protones , Radioterapia de Intensidad Modulada , Humanos , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patología , Pulmón/diagnóstico por imagen , Pulmón/patología , Radioterapia de Intensidad Modulada/métodos , Dosificación Radioterapéutica , Órganos en Riesgo
18.
Radiother Oncol ; 182: 109555, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36813166

RESUMEN

BACKGROUND AND PURPOSE: Magnetic resonance imaging guided radiotherapy (MRgRT) with deformable multileaf collimator (MLC) tracking would allow to tackle both rigid displacement and tumor deformation without prolonging treatment. However, the system latency must be accounted for by predicting future tumor contours in real-time. We compared the performance of three artificial intelligence (AI) algorithms based on long short-term memory (LSTM) modules for the prediction of 2D-contours 500ms into the future. MATERIALS AND METHODS: Models were trained (52 patients, 3.1h of motion), validated (18 patients, 0.6h) and tested (18 patients, 1.1h) with cine MRs from patients treated at one institution. Additionally, we used three patients (2.9h) treated at another institution as second testing set. We implemented 1) a classical LSTM network (LSTM-shift) predicting tumor centroid positions in superior-inferior and anterior-posterior direction which are used to shift the last observed tumor contour. The LSTM-shift model was optimized both in an offline and online fashion. We also implemented 2) a convolutional LSTM model (ConvLSTM) to directly predict future tumor contours and 3) a convolutional LSTM combined with spatial transformer layers (ConvLSTM-STL) to predict displacement fields used to warp the last tumor contour. RESULTS: The online LSTM-shift model was found to perform slightly better than the offline LSTM-shift and significantly better than the ConvLSTM and ConvLSTM-STL. It achieved a 50% Hausdorff distance of 1.2mm and 1.0mm for the two testing sets, respectively. Larger motion ranges were found to lead to more substantial performance differences across the models. CONCLUSION: LSTM networks predicting future centroids and shifting the last tumor contour are the most suitable for tumor contour prediction. The obtained accuracy would allow to reduce residual tracking errors during MRgRT with deformable MLC-tracking.


Asunto(s)
Inteligencia Artificial , Neoplasias , Humanos , Movimiento (Física) , Algoritmos , Planificación de la Radioterapia Asistida por Computador/métodos
19.
Med Phys ; 50(8): 4981-4992, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36847184

RESUMEN

BACKGROUND: The treatment of moving tumor entities is expected to have superior clinical outcomes, using image-guided adaptive intensity-modulated proton therapy (IMPT). PURPOSE: For 21 lung cancer patients, IMPT dose calculations were performed on scatter-corrected 4D cone beam CTs (4DCBCTcor ) to evaluate their potential for triggering treatment adaptation. Additional dose calculations were performed on corresponding planning 4DCTs and day-of-treatment 4D virtual CTs (4DvCTs). METHODS: A 4DCBCT correction workflow, previously validated on a phantom, generates 4DvCT (CT-to-CBCT deformable registration) and 4DCBCTcor images (projection-based correction using 4DvCT as a prior) with 10 phase bins, using day-of-treatment free-breathing CBCT projections and planning 4DCT images as input. Using a research planning system, robust IMPT plans administering eight fractions of 7.5 Gy were created on a free-breathing planning CT (pCT) contoured by a physician. The internal target volume (ITV) was overridden with muscle tissue. Robustness settings for range and setup uncertainties were 3% and 6 mm, and a Monte Carlo dose engine was used. On every phase of planning 4DCT, day-of-treatment 4DvCT, and 4DCBCTcor , the dose was recalculated. For evaluation, image analysis as well as dose analysis were performed using mean error (ME) and mean absolute error (MAE) analysis, dose-volume histogram (DVH) parameters, and 2%/2-mm gamma pass rate analysis. Action levels (1.6% ITV D98 and 90% gamma pass rate) based on our previous phantom validation study were set to determine which patients had a loss of dosimetric coverage. RESULTS: Quality enhancements of 4DvCT and 4DCBCTcor over 4DCBCT were observed. ITV D98% and bronchi D2% had its largest agreement for 4DCBCTcor -4DvCT, and the largest gamma pass rates (>94%, median 98%) were found for 4DCBCTcor -4DvCT. Deviations were larger and gamma pass rates were smaller for 4DvCT-4DCT and 4DCBCTcor -4DCT. For five patients, deviations were larger than the action levels, suggesting substantial anatomical changes between pCT and CBCT projections acquisition. CONCLUSIONS: This retrospective study shows the feasibility of daily proton dose calculation on 4DCBCTcor for lung tumor patients. The applied method is of clinical interest as it generates up-to-date in-room images, accounting for breathing motion and anatomical changes. This information could be used to trigger replanning.


Asunto(s)
Neoplasias Pulmonares , Terapia de Protones , Humanos , Estudios Retrospectivos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Protones , Tomografía Computarizada de Haz Cónico
20.
Med Phys ; 50(3): 1573-1585, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36259384

RESUMEN

BACKGROUND: Online adaptive radiation therapy (RT) using hybrid magnetic resonance linear accelerators (MR-Linacs) can administer a tailored radiation dose at each treatment fraction. Daily MR imaging followed by organ and target segmentation adjustments allow to capture anatomical changes, improve target volume coverage, and reduce the risk of side effects. The introduction of automatic segmentation techniques could help to further improve the online adaptive workflow by shortening the re-contouring time and reducing intra- and inter-observer variability. In fractionated RT, prior knowledge, such as planning images and manual expert contours, is usually available before irradiation, but not used by current artificial intelligence-based autocontouring approaches. PURPOSE: The goal of this study was to train convolutional neural networks (CNNs) for automatic segmentation of bladder, rectum (organs at risk, OARs), and clinical target volume (CTV) for prostate cancer patients treated at 0.35 T MR-Linacs. Furthermore, we tested the CNNs generalization on data from independent facilities and compared them with the MR-Linac treatment planning system (TPS) propagated structures currently used in clinics. Finally, expert planning delineations were utilized for patient- (PS) and facility-specific (FS) transfer learning to improve auto-segmentation of CTV and OARs on fraction images. METHODS: In this study, data from fractionated treatments at 0.35 T MR-Linacs were leveraged to develop a 3D U-Net-based automatic segmentation. Cohort C1 had 73 planning images and cohort C2 had 19 planning and 240 fraction images. The baseline models (BMs) were trained solely on C1 planning data using 53 MRIs for training and 10 for validation. To assess their accuracy, the models were tested on three data subsets: (i) 10 C1 planning images not used for training, (ii) 19 C2 planning, and (iii) 240 C2 fraction images. BMs also served as a starting point for FS and PS transfer learning, where the planning images from C2 were used for network parameter fine tuning. The segmentation output of the different trained models was compared against expert ground truth by means of geometric metrics. Moreover, a trained physician graded the network segmentations as well as the segmentations propagated by the clinical TPS. RESULTS: The BMs showed dice similarity coefficients (DSC) of 0.88(4) and 0.93(3) for the rectum and the bladder, respectively, independent of the facility. CTV segmentation with the BM was the best for intermediate- and high-risk cancer patients from C1 with DSC=0.84(5) and worst for C2 with DSC=0.74(7). The PS transfer learning brought a significant improvement in the CTV segmentation, yielding DSC=0.72(4) for post-prostatectomy and low-risk patients and DSC=0.88(5) for intermediate- and high-risk patients. The FS training did not improve the segmentation accuracy considerably. The physician's assessment of the TPS-propagated versus network-generated structures showed a clear advantage of the latter. CONCLUSIONS: The obtained results showed that the presented segmentation technique has potential to improve automatic segmentation for MR-guided RT.


Asunto(s)
Inteligencia Artificial , Neoplasias de la Próstata , Masculino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía Computarizada por Rayos X , Planificación de la Radioterapia Asistida por Computador/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Órganos en Riesgo/efectos de la radiación , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...