Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
MethodsX ; 11: 102290, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37577167

RESUMEN

QuEChERS (quick, easy, cheap, effective, rugged, and safe) sample processing methods have previously been applied to a range of compounds and matrices. This study presents a modified QuEChERS sample processing method that was validated and employed for 24 per- and polyfluoroalkyl substances (PFAS) for various biological matrices. PFAS are a group of synthetic chemicals that have attracted substantial attention as some compounds are acknowledged to be persistent, toxic, and bioaccumulative. It is crucial to determine PFAS in diverse environmental matrices. Currently, limited sample processing methods for PFAS in biological matrices are available and the majority only focus on a few compounds such as perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA). Thus, there is a demand to develop a sample processing method which is effective for many commonly tested PFAS compounds in environmental biological samples. In this study, the detailed sample processing procedures and method performance are described. The highlights of this method are: •The extraction solvent and salts were adjusted for PFAS extraction from environmental biological matrices.•The modified QuEChERS method is effective for extraction and cleanup from a variety of matrices including algae, plants, invertebrates, amphibians, and fish.

2.
Environ Pollut ; 331(Pt 2): 121938, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37263566

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) have extensively contaminated freshwater aquatic ecosystems where they can be transported in water and partition to sediment and biota. In this paper, three freshwater benthic macroinvertebrates with different foraging modes were exposed to environmentally relevant concentrations of eight perfluoroalkyl carboxylates (PFCA), three perfluoroalkyl sulfonates (PFSA), and three fluorotelomer sulfonates (FTS) at varying divalent cation concentrations of magnesium (Mg2+) and calcium (Ca2+). Divalent cations can impact PFAS partitioning to solids, especially to sediments, at higher concentrations. Sediment dwelling worms (Lumbriculus variegatus), epibenthic grazing snails (Physella acuta), and sediment-dwelling filter-feeding bivalves (Elliptio complanata) were selected due to their unique foraging modes. Microcosms were composed of synthetic sediment, culture water, macroinvertebrates, and PFAS and consisted of a 28-day exposure period. L. variegatus had significantly higher PFAS bioaccumulation than P. acuta and E. complanata, likely due to higher levels of interactions with and ingestion of the contaminated sediment. "High Mg2+" (7.5 mM Mg2+) and "High Ca2+" (7.5 mM Ca2+) conditions generally had statistically higher bioaccumulation factors (BAF) than the "Reference Condition" (0.2 mM Ca2+ and 0.2 mM Mg2+) for PFAS with perfluorinated chain lengths greater than eight carbons. Long-chain PFAS dominated the PFAS profiles of the macroinvertebrates for all groups of compounds studied (PFCA, PFSA, and FTS). These results indicate that the study organism has the greatest impact on bioaccumulation, although divalent cation concentration had observable impacts between organisms depending on the environmental conditions. Elevated cation concentrations in the microcosms led to significantly greater bioaccumulation in the test organisms compared to the experimental reference conditions for long-chain PFAS.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Cationes Bivalentes , Bioacumulación , Ecosistema , Contaminantes Químicos del Agua/análisis , Fluorocarburos/análisis , Agua Dulce , Alcanosulfonatos , Agua , Ácidos Carboxílicos
3.
Sci Total Environ ; 866: 161208, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36581279

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) in aquatic environments have caused global concern due to their persistence, toxicity, and potential bioaccumulation of some compounds. As an important compartment of the aquatic ecosystem, sediment properties impact PFAS partitioning between aqueous and solid phases, but little is known about the influence of sediment organic carbon content on PFAS bioaccumulation in benthic organisms. In this study, three freshwater benthic macroinvertebrates - worms (Lumbriculus variegatus), mussels (Elliptio complanata) and snails (Physella acuta) - were exposed for 28 days to PFAS spiked synthetic sediment equilibrated with a synthetic surface water. Using microcosms, sediment organic carbon content - 2%, 5% and 8% - was manipulated to assess its impact on PFAS bioaccumulation. Worms were found to have substantially greater PFAS bioaccumulation compared to mussels and snails. The bioaccumulation factors (BAFs) and biota sediment accumulation factors (BSAFs) in worms were both one to two magnitudes higher than in mussels and snails, likely due to different habitat-specific uptake pathways and elimination capacities among species. In these experiments, increasing sediment organic carbon content decreased the bioaccumulation of PFAS to benthic macroinvertebrates. In worms, sediment organic carbon content was hypothesized to impact PFAS bioaccumulation by affecting PFAS partitioning and sediment ingestion rate. Notably, the BSAF values of 8:2 fluorotelomer sulfonic acid (FTS) were the largest among 14 PFAS for all species, suggesting that the benthic macroinvertebrates probably have different metabolic mechanisms for fluorotelomer sulfonic acids compared to fish evaluated in published literature. Understanding the impact of species and sediment organic carbon on PFAS bioaccumulation is key to developing environmental quality guidelines and evaluating potential ecological risks to higher trophic level species.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Animales , Bioacumulación , Carbono , Ecosistema , Contaminantes Químicos del Agua/análisis , Agua Dulce , Sedimentos Geológicos
4.
Sci Total Environ ; 822: 153561, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35101505

RESUMEN

Due to the bioaccumulative behavior, toxicity, and recalcitrance to degradation, per- and polyfluoroalkyl substances (PFAS) are a focus for many researchers investigating freshwater aquatic ecosystems. PFAS are a diverse set of chemicals that accumulate and transport quite differently in the environment depending on the length of their fluoroalkyl chains and their functional groups. This diversity in PFAS chemical characteristics combined with varying environmental factors also impact the bioaccumulation of these compounds in different organisms. In this review, we evaluate environmental factors (such as organic carbon, proteins, lipids, and dissolved cations) as well as PFAS characteristics (head group, chain-length, and concentration) that contribute to the significant variation seen in the literature of bioaccumulation metrics reported for organisms in aquatic ecosystems. Of the factors evaluated, it was found that PFAS concentration, dissolved organic matter, sediment organic matter, and biotransformation of precursor PFAS tended to significantly impact reported bioaccumulation metrics the most. Based on this review, it is highly suggested that future studies provide sufficient details of important environmental factors, specific organism traits/ behavior, and PFAS concentrations/compounds when reporting on bioaccumulation metrics to further fill data gaps and improve our understanding of PFAS in aquatic ecosystems.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Bioacumulación , Ecosistema , Fluorocarburos/análisis , Agua Dulce , Contaminantes Químicos del Agua/análisis
5.
Sci Total Environ ; 769: 144324, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33482551

RESUMEN

Meeting ecological and water quality standards in lotic ecosystems is often failed due to multiple stressors. However, disentangling stressor effects and identifying relevant stressor-effect-relationships in complex environmental settings remain major challenges. By combining state-of-the-art methods from ecotoxicology and aquatic ecosystem analysis, we aimed here to disentangle the effects of multiple chemical and non-chemical stressors along a longitudinal land use gradient in a third-order river in Germany. We distinguished and evaluated four dominant stressor categories along this gradient: (1) Hydromorphological alterations: Flow diversity and substrate diversity correlated with the EU-Water Framework Directive based indicators for the quality element macroinvertebrates, which deteriorated at the transition from near-natural reference sites to urban sites. (2) Elevated nutrient levels and eutrophication: Low to moderate nutrient concentrations together with complete canopy cover at the reference sites correlated with low densities of benthic algae (biofilms). We found no more systematic relation of algal density with nutrient concentrations at the downstream sites, suggesting that limiting concentrations are exceeded already at moderate nutrient concentrations and reduced shading by riparian vegetation. (3) Elevated organic matter levels: Wastewater treatment plants (WWTP) and stormwater drainage systems were the primary sources of bioavailable dissolved organic carbon. Consequently, planktonic bacterial production and especially extracellular enzyme activity increased downstream of those effluents showing local peaks. (4) Micropollutants and toxicity-related stress: WWTPs were the predominant source of toxic stress, resulting in a rapid increase of the toxicity for invertebrates and algae with only one order of magnitude below the acute toxic levels. This toxicity correlates negatively with the contribution of invertebrate species being sensitive towards pesticides (SPEARpesticides index), probably contributing to the loss of biodiversity recorded in response to WWTP effluents. Our longitudinal approach highlights the potential of coordinated community efforts in supplementing established monitoring methods to tackle the complex phenomenon of multiple stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...