Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Genet ; 56(3): 383-394, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38291334

RESUMEN

Brain region-specific degeneration and somatic expansions of the mutant Huntingtin (mHTT) CAG tract are key features of Huntington's disease (HD). However, the relationships among CAG expansions, death of specific cell types and molecular events associated with these processes are not established. Here, we used fluorescence-activated nuclear sorting (FANS) and deep molecular profiling to gain insight into the properties of cell types of the human striatum and cerebellum in HD and control donors. CAG expansions arise at mHTT in striatal medium spiny neurons (MSNs), cholinergic interneurons and cerebellar Purkinje neurons, and at mutant ATXN3 in MSNs from SCA3 donors. CAG expansions in MSNs are associated with higher levels of MSH2 and MSH3 (forming MutSß), which can inhibit nucleolytic excision of CAG slip-outs by FAN1. Our data support a model in which CAG expansions are necessary but may not be sufficient for cell death and identify transcriptional changes associated with somatic CAG expansions and striatal toxicity.


Asunto(s)
Cuerpo Estriado , Enfermedad de Huntington , Humanos , Animales , Cerebelo/metabolismo , Enfermedad de Huntington/genética , Modelos Animales de Enfermedad
2.
Neuron ; 112(6): 924-941.e10, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38237588

RESUMEN

The properties of the cell types that are selectively vulnerable in Huntington's disease (HD) cortex, the nature of somatic CAG expansions of mHTT in these cells, and their importance in CNS circuitry have not been delineated. Here, we employed serial fluorescence-activated nuclear sorting (sFANS), deep molecular profiling, and single-nucleus RNA sequencing (snRNA-seq) of motor-cortex samples from thirteen predominantly early stage, clinically diagnosed HD donors and selected samples from cingulate, visual, insular, and prefrontal cortices to demonstrate loss of layer 5a pyramidal neurons in HD. Extensive mHTT CAG expansions occur in vulnerable layer 5a pyramidal cells, and in Betz cells, layers 6a and 6b neurons that are resilient in HD. Retrograde tracing experiments in macaque brains identify layer 5a neurons as corticostriatal pyramidal cells. We propose that enhanced somatic mHTT CAG expansion and altered synaptic function act together to cause corticostriatal disconnection and selective neuronal vulnerability in HD cerebral cortex.


Asunto(s)
Enfermedad de Huntington , Animales , Enfermedad de Huntington/metabolismo , Neuronas/metabolismo , Células Piramidales/metabolismo , Corteza Cerebral/metabolismo , Núcleo Solitario/metabolismo , Modelos Animales de Enfermedad , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
3.
bioRxiv ; 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37333326

RESUMEN

Brain region-specific degeneration and somatic expansions of the mutant Huntingtin (mHTT) CAG tract are key features of Huntington's disease (HD). However, the relationships between CAG expansions, death of specific cell types, and molecular events associated with these processes are not established. Here we employed fluorescence-activated nuclear sorting (FANS) and deep molecular profiling to gain insight into the properties of cell types of the human striatum and cerebellum in HD and control donors. CAG expansions arise in striatal medium spiny neurons (MSNs) and cholinergic interneurons, in cerebellar Purkinje neurons, and at mATXN3 in MSNs from SCA3 donors. CAG expansions in MSNs are associated with higher levels of MSH2 and MSH3 (forming MutSß), which can inhibit nucleolytic excision of CAG slip-outs by FAN1 in a concentration-dependent manner. Our data indicate that ongoing CAG expansions are not sufficient for cell death, and identify transcriptional changes associated with somatic CAG expansions and striatal toxicity.

4.
bioRxiv ; 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37162977

RESUMEN

The properties of the cell types that are selectively vulnerable in Huntington's disease (HD) cortex, the nature of somatic CAG expansions of mHTT in these cells, and their importance in CNS circuitry have not been delineated. Here we employed serial fluorescence activated nuclear sorting (sFANS), deep molecular profiling, and single nucleus RNA sequencing (snRNAseq) to demonstrate that layer 5a pyramidal neurons are vulnerable in primary motor cortex and other cortical areas of HD donors. Extensive mHTT -CAG expansions occur in vulnerable layer 5a pyramidal cells, and in Betz cells, layer 6a, layer 6b neurons that are resilient in HD. Retrograde tracing experiments in macaque brains identify the vulnerable layer 5a neurons as corticostriatal pyramidal cells. We propose that enhanced somatic mHTT -CAG expansion and altered synaptic function act together to cause corticostriatal disconnection and selective neuronal vulnerability in the HD cerebral cortex.

5.
Cell ; 168(1-2): 295-310.e19, 2017 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-28041852

RESUMEN

The deep dorsal horn is a poorly characterized spinal cord region implicated in processing low-threshold mechanoreceptor (LTMR) information. We report an array of mouse genetic tools for defining neuronal components and functions of the dorsal horn LTMR-recipient zone (LTMR-RZ), a role for LTMR-RZ processing in tactile perception, and the basic logic of LTMR-RZ organization. We found an unexpectedly high degree of neuronal diversity in the LTMR-RZ: seven excitatory and four inhibitory subtypes of interneurons exhibiting unique morphological, physiological, and synaptic properties. Remarkably, LTMRs form synapses on between four and 11 LTMR-RZ interneuron subtypes, while each LTMR-RZ interneuron subtype samples inputs from at least one to three LTMR classes, as well as spinal cord interneurons and corticospinal neurons. Thus, the LTMR-RZ is a somatosensory processing region endowed with a neuronal complexity that rivals the retina and functions to pattern the activity of ascending touch pathways that underlie tactile perception.


Asunto(s)
Médula Espinal/citología , Médula Espinal/metabolismo , Sinapsis , Animales , Axones/metabolismo , Dendritas/metabolismo , Interneuronas/citología , Interneuronas/metabolismo , Mecanorreceptores/metabolismo , Ratones , Biología Molecular/métodos , Vías Nerviosas , Percepción del Tacto
6.
Cold Spring Harb Protoc ; 2013(3)2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23457350

RESUMEN

The brain is a complex tissue comprising hundreds of distinct cell types, each of which has unique circuitry and plays a discrete role in nervous system function. Large-scale studies mapping gene-expression patterns throughout the nervous system have revealed that many genes are exclusively expressed in specific cell populations. The GENSAT (Gene Expression Nervous System Atlas) Project created a library of engineered mice utilizing bacterial artificial chromosomes (BACs) to drive the expression of enhanced green fluorescent protein (eGFP) in genetically defined cell populations. BACs contain large segments of genomic DNA and retain most of the transcriptional regulatory elements directing the expression of a given gene, resulting in more faithful reproduction of endogenous expression patterns. BAC transgenic mice offer a robust solution to the challenging task of stably and reproducibly accessing specific cell types from a heterogeneous tissue such as the brain. A significant advantage of utilizing eGFP as a reporter is the fact that it can fill entire cells, including neuronal dendrites and axons as well as glial processes, making GENSAT reporter mice a powerful tool for neuroimaging studies. This article provides a primer on the generation of BAC transgenic mice and advantages for their use in labeling genetically defined cell types. It also provides an overview of searching the GENSAT database and ordering engineered mouse lines.


Asunto(s)
Bases de Datos Genéticas , Ratones Transgénicos , Fenómenos Fisiológicos del Sistema Nervioso , Animales , Cromosomas Artificiales Bacterianos , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Ratones
7.
Cell ; 147(7): 1615-27, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22196735

RESUMEN

Innocuous touch of the skin is detected by distinct populations of neurons, the low-threshold mechanoreceptors (LTMRs), which are classified as Aß-, Aδ-, and C-LTMRs. Here, we report genetic labeling of LTMR subtypes and visualization of their relative patterns of axonal endings in hairy skin and the spinal cord. We found that each of the three major hair follicle types of trunk hairy skin (guard, awl/auchene, and zigzag hairs) is innervated by a unique and invariant combination of LTMRs; thus, each hair follicle type is a functionally distinct mechanosensory end organ. Moreover, the central projections of Aß-, Aδ-, and C-LTMRs that innervate the same or adjacent hair follicles form narrow LTMR columns in the dorsal horn. These findings support a model of mechanosensation in which the activities of Aß-, Aδ-, and C-LTMRs are integrated within dorsal horn LTMR columns and processed into outputs that underlie the perception of myriad touch sensations.


Asunto(s)
Cabello/fisiología , Mecanorreceptores/fisiología , Fenómenos Fisiológicos de la Piel , Piel/inervación , Animales , Axones/fisiología , Ratones , Neuronas/fisiología , Umbral Sensorial , Piel/citología , Médula Espinal/fisiología
8.
Nat Protoc ; 5(10): 1678-96, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20885380

RESUMEN

We report here a high-throughput method for the modification of bacterial artificial chromosomes (BACs) that uses a novel two-plasmid approach. In this protocol, a vector modified in our laboratory to hold an R6Kγ origin of replication and a marker recombination cassette is inserted into a BAC in a single recombination step. Temporal control of recombination is achieved through the use of a second plasmid, pSV1.RecA, which possesses a recombinase gene and a temperature-sensitive origin of replication. This highly efficient protocol has allowed us to successfully modify more than 2,000 BACs, from which over 1,000 BAC transgenic mice have been generated. A complete cycle from BAC choice to embryo implantation takes about 5 weeks. Marker genes introduced into the mice include EGFP and EGFP-L10a. All vectors used in this project can be obtained from us by request, and the EGFP reporter mice are available through the Mutant Mouse Regional Resource Center (NINDS/GENSAT collection). CNS anatomical expression maps of the mice are available to the public at http://www.gensat.org/.


Asunto(s)
Cromosomas Artificiales Bacterianos/genética , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Origen de Réplica/genética , Animales , ADN Bacteriano/genética , Bases de Datos Genéticas , Escherichia coli/genética , Colorantes Fluorescentes/química , Biblioteca de Genes , Proteínas Fluorescentes Verdes/química , Ratones , Ratones Transgénicos , Rec A Recombinasas/genética , Recombinación Genética , Transgenes
9.
J Comp Neurol ; 463(3): 341-57, 2003 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-12820166

RESUMEN

A mouse monoclonal antibody (clone 62-2E8) raised against a human recombinant high-affinity choline transporter (CHT)-glutathione-S-transferase fusion protein was used to determine the distribution of immunoreactive profiles containing this protein in the monkey central nervous system (CNS). Within the monkey telencephalon, CHT-immunoreactive perikarya were found in the striatum, nucleus accumbens, medial septum, vertical and horizontal limb nuclei of the diagonal band, nucleus basalis complex, and the bed nucleus of the stria terminalis. Dense fiber staining was observed within the islands of Calleja, olfactory tubercle, hippocampal complex, amygdala; moderate to light fiber staining was seen in iso- and limbic cortices. CHT-containing fibers were also present in sensory and limbic thalamic nuclei, preoptic and hypothalamic areas, and the floccular lobe of the cerebellum. In the brainstem, CHT-immunoreactive profiles were observed in the pedunculopontine and dorsolateral tegmental nuclei, the Edinger-Westphal, oculomotor, trochlear, trigeminal, abducens, facial, ambiguus, dorsal vagal motor, and hypoglossal nuclei. In the spinal cord, CHT-immunoreactive ventral horn motoneurons were seen in close apposition to intensely immunoreactive C-terminals at the level of the cervical spinal cord. CHT immunostaining revealed a similar distribution of labeled profiles in the aged human brain and spinal cord. Dual fluorescent confocal microscopy revealed that the majority of CHT immunoreactive neurons contained the specific cholinergic marker, choline acetyltransferase, at all levels of the monkey CNS. The present observations indicate that the present CHT antibody labels cholinergic structures within the primate CNS and provides an additional marker for the investigation of cholinergic neuronal function in aging and disease.


Asunto(s)
Sistema Nervioso Central/metabolismo , Macaca mulatta/fisiología , Proteínas de Transporte de Membrana/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Colina O-Acetiltransferasa/metabolismo , Femenino , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...