Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 10537, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719934

RESUMEN

Topological insulators (TI) hold significant potential for various electronic and optoelectronic devices that rely on the Dirac surface state (DSS), including spintronic and thermoelectric devices, as well as terahertz detectors. The behavior of electrons within the DSS plays a pivotal role in the performance of such devices. It is expected that DSS appear on a surface of three dimensional(3D) TI by mechanical exfoliation. However, it is not always the case that the surface terminating atomic configuration and corresponding band structures are homogeneous. In order to investigate the impact of surface terminating atomic configurations on electron dynamics, we meticulously examined the electron dynamics at the exfoliated surface of a crystalline 3D TI (Bi 2 Se 3 ) with time, space, and energy resolutions. Based on our comprehensive band structure calculations, we found that on one of the Se-terminated surfaces, DSS is located within the bulk band gap, with no other surface states manifesting within this region. On this particular surface, photoexcited electrons within the conduction band effectively relax towards DSS and tend to linger at the Dirac point for extended periods of time. It is worth emphasizing that these distinct characteristics of DSS are exclusively observed on this particular surface.

2.
Phys Chem Chem Phys ; 26(12): 9733-9740, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38470432

RESUMEN

We present a novel strategy to create a van der Waals-based magnetic tunnel junction (MTJ) comprising a three-atom layer of graphene (Gr) sandwiched with hexagonal boron nitride (hBN) layers by introducing a monoatomic boron vacancy in each hBN layer. The magnetic properties and electronic structure of the system were investigated using density functional theory (DFT) and the transmission probability of the MTJ was investigated using the Landauer-Büttiker formalism within the non-equilibrium Green function method. The Stoner gap was created between the spin-majority channel and the spin-minority channel on the local density of states of the hBN monoatomic boron-vacancy (VB) near the Fermi energy, creating a possible control of the spin valve by considering two magnetic alignment of hBN(VB) layers, anti-parallel configuration (APC) and parallel configuration (PC). The transmission probability calculation results showed a high electron transmission in the PC of the hBN(VB) layers and a low transmission when the APC was considered. A high tunneling magnetoresistance (TMR) ratio of approximately 400% was observed when comparing the APC and PC of the hBN(VB) layers in hBN(VB)/Gr/hBN(VB), giving the highest TMR ratio for the thinnest MTJ system.

3.
Beilstein J Org Chem ; 20: 570-577, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505239

RESUMEN

We theoretically analyze possible multiple conformations of protein molecules immobilized by 1-pyrenebutanoic acid succinimidyl ester (PASE) linkers on graphene. The activation barrier between two bi-stable conformations exhibited by PASE is confirmed to be based on the steric hindrance effect between a hydrogen on the pyrene group and a hydrogen on the alkyl group of this molecule. Even after the protein is supplemented, this steric hindrance effect remains if the local structure of the linker consisting of an alkyl group and a pyrene group is maintained. Therefore, it is likely that the kinetic behavior of a protein immobilized with a single PASE linker exhibits an activation barrier-type energy surface between the bi-stable conformations on graphene. We discuss the expected protein sensors when this type of energy surface appears and provide a guideline for improving the sensitivity, especially as an oscillator-type biosensor.

4.
J Phys Chem A ; 126(43): 8082-8087, 2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36264275

RESUMEN

In this paper, we explored stable states in the system of 2,4,6-trinitrotoluene (TNT) crystal with a few additional hydrogen radicals (Hadd's) using a structure-search scheme based on first-principles calculations and an evolutionary algorithm (EA) to get insights into the decomposition process of TNT. We introduced three evolutionary operators acting on Hadd's and transforming only local structures of TNT molecules: "displacement", "permutation", and "mating". We searched for stable structures by increasing the number of Hadd's (n) from 1 to 2, 3, 4, 6, and 8 and constructed a convex-hull diagram for the formation energy from solid TNT and solid hydrogen. We showed that the system of n = 6 had the largest energy reduction, in which five of the eight TNT molecules in the calculation cell were transformed into NO, H2O, C2H3N, C2NO3H3, C8N2O4H7, C9N2O8H5, and C14N7O12H11. Analysis of the structural transformations observed during the EA search indicates that (1) the Hadd's approaching the TNT molecules react with C, forming a six-membered ring, and with N and O in nitro groups, leaving the TNT molecules as NO, H2O, C2H3N, and C2NO3H3, and (2) the partially decomposed TNT molecules are bonded to one another via C, N, and O.

5.
ACS Omega ; 7(35): 31120-31125, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36092595

RESUMEN

The adsorbed structure of 1-pyrenebutanoic acid succinimidyl ester (PASE) on graphene was investigated based on density functional theory. We found two locally stable structures: a straight structure with the chainlike part of butanoic acid succinimidyl ester (BSE) lying down and a bent structure with the BSE part directed away from graphene, keeping the pyrene (Py) part adsorbed on graphene. Then, to elucidate the adsorption mechanism, we separately estimated the contributions of the Py and BSE parts to the entire PASE adsorption, and the adsorption effect of the BSE part was found to be secondary in comparison to the contribution of the Py. Next, the mobility of the BSE part at room temperature was confirmed by the activation energy barrier between straight and bent structures. To take account of the external environment, we considered the presence of amino acids and the hydration effect by a three-dimensional reference interaction site model. The contributions of glycine molecules and the solvent environment to stabilizing the bent PASE structure relative to the straight PASE structure were found. Therefore, the effect of the external environment around PASE is of importance when the standing-up process of the BSE part from graphene is considered.

6.
RSC Adv ; 12(22): 13985-13991, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35558854

RESUMEN

In this study, we present a theoretical study on the in-plane conductance of graphene partially sandwiched between Ni(111) nanostructures with a width of ∼12.08 Å. In the sandwiched part, the gapped Dirac cone of the graphene was controlled using a pseudospin by changing the magnetic alignment of the Ni(111) nanostructures. Upon considering the antiparallel configuration of Ni(111) nanostructures, the transmission probability calculation of the in-plane conductance of graphene shows a gap-like transmission at E - E F = 0.2 and 0.65 eV from the pd-hybridization and controllable Dirac cone of graphene, respectively. In the parallel configuration, the transmission probability calculation showed a profile similar to that of the pristine graphene. High and colossal magnetoresistance ratios of 284% and 3100% were observed at E - E F = 0.65 eV and 0.2 eV, respectively. Furthermore, a magnetoresistance beyond 3100% was expected at E - E F = 0.65 eV when the width of the Ni(111) nanostructures on the nanometer scale was considered.

7.
Nanoscale Adv ; 4(1): 117-124, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36132958

RESUMEN

This work presents an ab initio study of a few-layer hexagonal boron nitride (hBN) and hBN-graphene heterostructure sandwiched between Ni(111) layers. The aim of this study is to understand the electron transmission process through the interface. Spin-polarized density functional theory calculations and transmission probability calculations were conducted on Ni(111)/nhBN/Ni(111) with n = 2, 3, 4, and 5 as well as on Ni(111)/hBN-Gr-hBN/Ni(111). Slabs with magnetic alignment in an anti-parallel configuration (APC) and parallel configuration (PC) were considered. The pd-hybridizations at both the upper and lower interfaces between the Ni slabs and hBN were found to stabilize the system. The Ni/nhBN/Ni magnetic tunnel junction (MTJ) was found to exhibit a high tunneling magnetoresistance (TMR) ratio at ∼0.28 eV for n = 2 and 0.34 eV for n > 2, which are slightly higher than the Fermi energy. The observed shifting of this high TMR ratio originates from the transmission of electrons through the surface states of the d z 2 -orbital of Ni atoms at interfaces which are hybridized with the p z -orbital of N atoms. In the case of n > 2, the proximity effect causes an evanescent wave, contributing to decreasing transmission probability but increasing the TMR ratio. However, the TMR ratio, as well as transmission probability, was found to be increased upon replacing the unhybridized hBN layer of the Ni/3hBN/Ni MTJ with graphene, thus yielding Ni/hBN-Gr-hBN/Ni. A TMR ratio as high as ∼1200% was observed at an energy of 0.34 eV, which is higher than the Fermi energy. Furthermore, a design is proposed for a device based on a new reading mechanism using the high TMR ratio observed just above the Fermi energy level.

8.
Faraday Discuss ; 173: 173-99, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25466581

RESUMEN

The geometry and chemistry of graphene nanostructures significantly affects their electronic properties. Despite a large number of experimental and theoretical studies dealing with the geometrical shape-dependent electronic properties of graphene nanostructures, experimental characterisation of their chemistry is clearly lacking. This is mostly due to the difficulties in preparing chemically-modified graphene nanostructures in a controlled manner and in identifying the exact chemistry of the graphene nanostructure on the atomic scale. Herein, we present scanning probe microscopic and first-principles characterisation of graphene nanostructures with different edge geometries and chemistry. Using the results of atomic scale electronic characterisation and theoretical simulation, we discuss the role of the edge geometry and chemistry on the electronic properties of graphene nanostructures with hydrogenated and oxidised linear edges at graphene boundaries and the internal edges of graphene vacancy defects. Atomic-scale details of the chemical composition have a strong impact on the electronic properties of graphene nanostructures, i.e., the presence or absence of non-bonding π states and the degree of resonance stability.

9.
Nat Commun ; 4: 2343, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23933685

RESUMEN

Diamond is the stiffest known material. Here we report that nanopolycrystal diamond synthesized by direct-conversion method from graphite is stiffer than natural and synthesized monocrystal diamonds. This observation departs from the usual thinking that nanocrystalline materials are softer than their monocrystals because of a large volume fraction of soft grain-boundary region. The direct conversion causes the nondiffusional phase transformation to cubic diamond, producing many twins inside diamond grains. We give an ab initio-calculation twinned model that confirms the stiffening. We find that shorter interplane bonds along [111] are significantly strengthened near the twinned region, from which the superstiff structure originates. Our discovery provides a novel step forward in the search for superstiff materials.

10.
J Phys Condens Matter ; 21(6): 064212, 2009 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-21715914

RESUMEN

To construct an optimization scheme for an extension of the Kohn-Sham approach, I introduce an operator form of the Coulomb interaction. This form is the sum of quadratic form pairs, which can be redefined in a self-consistent calculation of a multi-reference density functional theory. A detailed derivation of the form is given. A fluctuation term introduced in the extended Kohn-Sham scheme is expressed in this form for regularization. The present procedure also provides an exact derivation of effective negative interactions in charge fluctuation channels. Relevance to high-temperature superconductors is discussed.

11.
Phys Rev Lett ; 96(9): 095502, 2006 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-16606275

RESUMEN

We explore the unknown structure of phosphorus in phase IV (P-IV phase) based on first-principles calculations using the metadynamics simulation method. Starting from the simple cubic structure, we find a new modulated structure of the monoclinic lattice. The modulation is crucial to the stability of the structure. Through refining the structure further by changing the modulation period, we find the structure whose x-ray powder diffraction pattern is in best agreement with the experimental pattern. We expect that the modulation period of the structure in the P-IV phase is very close to that found in this study and probably incommensurate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...