Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
STAR Protoc ; 4(3): 102378, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37352107

RESUMEN

It remains uncertain how global genome nucleotide excision repair (GG-NER) efficiently removes various helix distorting DNA lesions in the cell nucleus. Here, we present a protocol to assess the contribution of factors of interest to GG-NER using two types of fluorescence-microscopy-based techniques. First, we describe steps for analyzing the localization of the factors upon local ultraviolet (UV) irradiation. We then detail the second technique, which quantifies the removal of UV-induced photolesions combined with lesion-specific antibodies and program-based image analysis. For complete details on the use and execution of this protocol, please refer to Kusakabe et al.1.


Asunto(s)
Daño del ADN , Reparación por Escisión , Daño del ADN/genética , Microscopía , Reparación del ADN , Células Cultivadas , Nucleótidos
2.
iScience ; 25(4): 104040, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35330687

RESUMEN

The XPC protein complex plays a central role in DNA lesion recognition for global genome nucleotide excision repair (GG-NER). Lesion recognition can be accomplished in either a UV-DDB-dependent or -independent manner; however, it is unclear how these sub-pathways are regulated in chromatin. Here, we show that histone deacetylases 1 and 2 facilitate UV-DDB-independent recruitment of XPC to DNA damage by inducing histone deacetylation. XPC localizes to hypoacetylated chromatin domains in a DNA damage-independent manner, mediated by its structurally disordered middle (M) region. The M region interacts directly with the N-terminal tail of histone H3, an interaction compromised by H3 acetylation. Although the M region is dispensable for in vitro NER, it promotes DNA damage removal by GG-NER in vivo, particularly in the absence of UV-DDB. We propose that histone deacetylation around DNA damage facilitates the recruitment of XPC through the M region, contributing to efficient lesion recognition and initiation of GG-NER.

3.
Biosci Biotechnol Biochem ; 86(1): 104-108, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34718407

RESUMEN

The histone variant H2A.Z is deposited into chromatin by specific machinery and is required for genome functions. Using a linker-mediated complex strategy combined with yeast genetic complementation, we demonstrate evolutionary conservation of H2A.Z together with its chromatin incorporation and functions. This approach is applicable to the evolutionary analyses of proteins that form complexes with interactors.


Asunto(s)
Histonas
4.
Sci Rep ; 10(1): 19704, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33184426

RESUMEN

The ubiquitin-proteasome system (UPS) plays crucial roles in regulation of various biological processes, including DNA repair. In mammalian global genome nucleotide excision repair (GG-NER), activation of the DDB2-associated ubiquitin ligase upon UV-induced DNA damage is necessary for efficient recognition of lesions. To date, however, the precise roles of UPS in GG-NER remain incompletely understood. Here, we show that the proteasome subunit PSMD14 and the UPS shuttle factor RAD23B can be recruited to sites with UV-induced photolesions even in the absence of XPC, suggesting that proteolysis occurs at DNA damage sites. Unexpectedly, sustained inhibition of proteasome activity results in aggregation of PSMD14 (presumably with other proteasome components) at the periphery of nucleoli, by which DDB2 is immobilized and sequestered from its lesion recognition functions. Although depletion of PSMD14 alleviates such DDB2 immobilization induced by proteasome inhibitors, recruitment of DDB2 to DNA damage sites is then severely compromised in the absence of PSMD14. Because all of these proteasome dysfunctions selectively impair removal of cyclobutane pyrimidine dimers, but not (6-4) photoproducts, our results indicate that the functional integrity of the proteasome is essential for the DDB2-mediated lesion recognition sub-pathway, but not for GG-NER initiated through direct lesion recognition by XPC.


Asunto(s)
Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Rayos Ultravioleta/efectos adversos , Línea Celular , ADN/metabolismo , ADN/efectos de la radiación , Daño del ADN , Reparación del ADN , Regulación de la Expresión Génica/efectos de la radiación , Humanos , Proteolisis , Transactivadores/metabolismo
5.
Genes Environ ; 41: 2, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30700997

RESUMEN

Nucleotide excision repair (NER) is a versatile DNA repair pathway, which can remove an extremely broad range of base lesions from the genome. In mammalian global genomic NER, the XPC protein complex initiates the repair reaction by recognizing sites of DNA damage, and this depends on detection of disrupted/destabilized base pairs within the DNA duplex. A model has been proposed that XPC first interacts with unpaired bases and then the XPD ATPase/helicase in concert with XPA verifies the presence of a relevant lesion by scanning a DNA strand in 5'-3' direction. Such multi-step strategy for damage recognition would contribute to achieve both versatility and accuracy of the NER system at substantially high levels. In addition, recognition of ultraviolet light (UV)-induced DNA photolesions is facilitated by the UV-damaged DNA-binding protein complex (UV-DDB), which not only promotes recruitment of XPC to the damage sites, but also may contribute to remodeling of chromatin structures such that the DNA lesions gain access to XPC and the following repair proteins. Even in the absence of UV-DDB, however, certain types of histone modifications and/or chromatin remodeling could occur, which eventually enable XPC to find sites with DNA lesions. Exploration of novel factors involved in regulation of the DNA damage recognition process is now ongoing.

6.
Nucleic Acids Res ; 46(19): 10007-10018, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30053102

RESUMEN

Mutations of the Glu76 residue of canonical histone H2B are frequently found in cancer cells. However, it is quite mysterious how a single amino acid substitution in one of the multiple H2B genes affects cell fate. Here we found that the H2B E76K mutation, in which Glu76 is replaced by Lys (E76K), distorted the interface between H2B and H4 in the nucleosome, as revealed by the crystal structure and induced nucleosome instability in vivo and in vitro. Exogenous production of the H2B E76K mutant robustly enhanced the colony formation ability of the expressing cells, indicating that the H2B E76K mutant has the potential to promote oncogenic transformation in the presence of wild-type H2B. We found that other cancer-associated mutations of histones, H3.1 E97K and H2A.Z.1 R80C, also induced nucleosome instability. Interestingly, like the H2B E76K mutant, the H3.1 E97K mutant was minimally incorporated into chromatin in cells, but it enhanced the colony formation ability. In contrast, the H2A.Z.1 R80C mutant was incorporated into chromatin in cells, and had minor effects on the colony formation ability of the cells. These characteristics of histones with cancer-associated mutations may provide important information toward understanding how the mutations promote cancer progression.


Asunto(s)
Histonas/química , Neoplasias/genética , Nucleosomas/genética , Cromatina/genética , Histonas/genética , Humanos , Mutación , Nucleosomas/química , Pliegue de Proteína
7.
Nucleus ; 9(1): 87-94, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29095668

RESUMEN

Histone exchange and histone post-translational modifications play important roles in the regulation of DNA metabolism, by re-organizing the chromatin configuration. We previously demonstrated that the histone variant H2A.Z-2 is rapidly exchanged at damaged sites after DNA double strand break induction in human cells. In yeast, the small ubiquitin-like modifier (SUMO) modification of H2A.Z is involved in the DNA damage response. However, whether the SUMO modification regulates the exchange of human H2A.Z-2 at DNA damage sites remains unclear. Here, we show that H2A.Z-2 is SUMOylated in a damage-dependent manner, and the SUMOylation of H2A.Z-2 is suppressed by the depletion of the SUMO E3 ligase, PIAS4. Moreover, PIAS4 depletion represses the incorporation and eviction of H2A.Z-2 at damaged sites. These findings demonstrate that the PIAS4-mediated SUMOylation regulates the exchange of H2A.Z-2 at DNA damage sites.


Asunto(s)
Daño del ADN , ADN/metabolismo , Histonas/química , Histonas/metabolismo , Proteína SUMO-1/metabolismo , ADN/química , Células HeLa , Histonas/genética , Humanos , Procesamiento Proteico-Postraduccional
8.
EMBO J ; 36(15): 2263-2279, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28645917

RESUMEN

Replacement of canonical histones with specialized histone variants promotes altering of chromatin structure and function. The essential histone variant H2A.Z affects various DNA-based processes via poorly understood mechanisms. Here, we determine the comprehensive interactome of H2A.Z and identify PWWP2A as a novel H2A.Z-nucleosome binder. PWWP2A is a functionally uncharacterized, vertebrate-specific protein that binds very tightly to chromatin through a concerted multivalent binding mode. Two internal protein regions mediate H2A.Z-specificity and nucleosome interaction, whereas the PWWP domain exhibits direct DNA binding. Genome-wide mapping reveals that PWWP2A binds selectively to H2A.Z-containing nucleosomes with strong preference for promoters of highly transcribed genes. In human cells, its depletion affects gene expression and impairs proliferation via a mitotic delay. While PWWP2A does not influence H2A.Z occupancy, the C-terminal tail of H2A.Z is one important mediator to recruit PWWP2A to chromatin. Knockdown of PWWP2A in Xenopus results in severe cranial facial defects, arising from neural crest cell differentiation and migration problems. Thus, PWWP2A is a novel H2A.Z-specific multivalent chromatin binder providing a surprising link between H2A.Z, chromosome segregation, and organ development.


Asunto(s)
Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Regulación de la Expresión Génica , Histonas/metabolismo , Mitosis , Cresta Neural/embriología , Animales , Línea Celular , Humanos , Unión Proteica , Xenopus/embriología
9.
10.
Genes Cells ; 21(2): 122-35, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26833946

RESUMEN

H2A.Z is one of the most evolutionally conserved histone variants. In vertebrates, this histone variant has two isoforms, H2A.Z.1 and H2A.Z.2, each of which is coded by an individual gene. H2A.Z is involved in multiple epigenetic regulations, and in humans, it also has relevance to carcinogenesis. In this study, we used the H2A.Z DKO cells, in which both H2A.Z isoform genes could be inducibly knocked out, for the functional analysis of H2A.Z by a genetic complementation assay, as the first example of its kind in vertebrates. Ectopically expressed wild-type H2A.Z and two N-terminal mutants, a nonacetylable H2A.Z mutant and a chimera in which the N-terminal tail of H2A.Z.1 was replaced with that of the canonical H2A, complemented the mitotic defects of H2A.Z DKO cells similarly, suggesting that both acetylation and distinctive sequence of the N-terminal tail of H2A.Z are not required for mitotic progression. In contrast, each one of these three forms of H2A.Z complemented the transcriptional defects of H2A.Z DKO cells differently. These results suggest that the N-terminal tail of vertebrate H2A.Z makes distinctively different contributions to these epigenetic events. Our results also imply that this genetic complementation system is a novel and useful tool for the functional analysis of H2A.Z.


Asunto(s)
Epigénesis Genética , Prueba de Complementación Genética/métodos , Histonas/genética , Histonas/metabolismo , Acetilación , Línea Celular , Técnicas de Inactivación de Genes , Histonas/química , Humanos , Mitosis , Mutación , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
11.
Int J Radiat Oncol Biol Phys ; 89(4): 736-44, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24969791

RESUMEN

PURPOSE: The reorganization of damaged chromatin plays an important role in the regulation of the DNA damage response. A recent study revealed the presence of 2 vertebrate H2A.Z isoforms, H2A.Z-1 and H2A.Z-2. However, the roles of the vertebrate H2A.Z isoforms are still unclear. Thus, in this study we examined the roles of the vertebrate H2A.Z isoforms in chromatin reorganization after the induction of DNA double-strand breaks (DSBs). METHODS AND MATERIALS: To examine the dynamics of H2A.Z isoforms at damaged sites, we constructed GM0637 cells stably expressing each of the green fluorescent protein (GFP)-labeled H2A.Z isoforms, and performed fluorescence recovery after photobleaching (FRAP) analysis and inverted FRAP analysis in combination with microirradiation. Immunofluorescence staining using an anti-RAD51 antibody was performed to study the kinetics of RAD51 foci formation after 2-Gy irradiation of wild-type (WT), H2A.Z-1- and H2A.Z-2-deficient DT40 cells. Colony-forming assays were also performed to compare the survival rates of WT, H2A.Z-1-, and H2A.Z-2-deficient DT40 cells with control, and H2A.Z-1- and H2A.Z-2-depleted U2OS cells after irradiation. RESULTS: FRAP analysis revealed that H2A.Z-2 was incorporated into damaged chromatin just after the induction of DSBs, whereas H2A.Z-1 remained essentially unchanged. Inverted FRAP analysis showed that H2A.Z-2 was released from damaged chromatin. These findings indicated that H2A.Z-2 was exchanged at DSB sites immediately after the induction of DSBs. RAD51 focus formation after ionizing irradiation was disturbed in H2A.Z-2-deficient DT40 cells but not in H2A.Z-1-deficient cells. The survival rate of H2A.Z-2-deficient cells after irradiation was lower than those of WT and H2A.Z-1- DT40 cells. Similar to DT40 cells, H2A.Z-2-depleted U2OS cells were also radiation-sensitive compared to control and H2A.Z-1-depleted cells. CONCLUSIONS: We found that vertebrate H2A.Z-2 is involved in the regulation of the DNA damage response at a very early stage, via the damaged chromatin reorganization required for RAD51 focus formation.


Asunto(s)
Cromatina/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN/fisiología , Histonas/metabolismo , Recombinasa Rad51/metabolismo , Supervivencia Celular/fisiología , Células Cultivadas , Cromatina/química , Cromatina/genética , Ensayo de Unidades Formadoras de Colonias/métodos , Técnica del Anticuerpo Fluorescente/métodos , Histonas/genética , Humanos , Isoformas de Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...