Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 12: 924424, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36250062

RESUMEN

Post-translational modifications (PTMs) including phosphorylation and palmitoylation have emerged as crucial biomolecular events that govern many cellular processes including functioning of motility- and invasion-associated proteins during Plasmodium falciparum invasion. However, no study has ever focused on understanding the possibility of a crosstalk between these two molecular events and its direct impact on preinvasion- and invasion-associated protein-protein interaction (PPI) network-based molecular machinery. Here, we used an integrated in silico analysis to enrich two different catalogues of proteins: (i) the first group defines the cumulative pool of phosphorylated and palmitoylated proteins, and (ii) the second group represents a common set of proteins predicted to have both phosphorylation and palmitoylation. Subsequent PPI analysis identified an important protein cluster comprising myosin A tail interacting protein (MTIP) as one of the hub proteins of the glideosome motor complex in P. falciparum, predicted to have dual modification with the possibility of a crosstalk between the same. Our findings suggested that blocking palmitoylation led to reduced phosphorylation and blocking phosphorylation led to abrogated palmitoylation of MTIP. As a result of the crosstalk between these biomolecular events, MTIP's interaction with myosin A was found to be abrogated. Next, the crosstalk between phosphorylation and palmitoylation was confirmed at a global proteome level by click chemistry and the phenotypic effect of this crosstalk was observed via synergistic inhibition in P. falciparum invasion using checkerboard assay and isobologram method. Overall, our findings revealed, for the first time, an interdependence between two PTM types, their possible crosstalk, and its direct impact on MTIP-mediated invasion via glideosome assembly protein myosin A in P. falciparum. These insights can be exploited for futuristic drug discovery platforms targeting parasite molecular machinery for developing novel antimalarial therapeutics.


Asunto(s)
Antimaláricos , Proteínas del Citoesqueleto/metabolismo , Malaria Falciparum , Proteínas de la Membrana/metabolismo , Miosina Tipo IIA no Muscular , Humanos , Lipoilación , Malaria Falciparum/parasitología , Miosina Tipo IIA no Muscular/química , Miosina Tipo IIA no Muscular/metabolismo , Fosforilación , Plasmodium falciparum , Proteoma/metabolismo , Proteínas Protozoarias/metabolismo
2.
Life (Basel) ; 11(4)2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805566

RESUMEN

Rice plants often encounter high temperature stress, but the associated coping strategies are poorly understood. It is known that a prior shorter exposure to high temperature, called thermo-priming, generally results in better adaptation of the plants to subsequent exposure to high temperature stress. High throughput sequencing of transcript and small RNA libraries of rice seedlings primed with short exposure to high temperature followed by high temperature stress and from plants exposed to high temperature without priming was performed. This identified a number of transcripts and microRNAs (miRs) that are induced or down regulated. Among them osa-miR531b, osa-miR5149, osa-miR168a-5p, osa-miR1846d-5p, osa-miR5077, osa-miR156b-3p, osa-miR167e-3p and their respective targets, coding for heat shock activators and repressors, showed differential expression between primed and non-primed plants. These findings were further validated by qRT-PCR. The results indicate that the miR-regulated heat shock proteins (HSPs)/heat shock transcription factors (HSFs) may serve as important regulatory nodes which are induced during thermo-priming for plant survival and development under high temperatures.

3.
Virusdisease ; 30(1): 13-21, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31143828

RESUMEN

Infectivity of cloned begomoviral DNAs is an important criterion to establish the etiology of the disease it causes, to study viral gene functions and host-virus interactions. Three main methods have been employed to study infectivity; mechanical inoculation with cloned viral DNA using abrasives, Agrobacterium-mediated inoculation (agroinoculation) of cloned viral DNA and bombardment using microprojectiles coated with cloned viral DNA (biolistics). Each method has its own advantages and disadvantages and the adoption of one over the other for demonstrating infectivity depends on various factors. This review compares the various features associated with the above three methods.

4.
Virusdisease ; 29(1): 61-67, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29607360

RESUMEN

Cassava mosaic disease is a widespread disease of cassava in south Asia and the African continent. In India, CMD is known to be caused by two single-stranded DNA viruses (geminiviruses), Indian cassava mosaic virus (ICMV) and Sri Lankan cassava mosdaic virus (SLCMV). Previously, the diversity of ICMV and SLCMV in India has been studied using PCR, a sequence-dependent method. To have a more in-depth study of the variability of the above viruses and to detect any novel geminiviruses associated with CMD, sequence-independent amplification using rolling circle amplification (RCA)-based methods were used. CMD affected cassava plants were sampled across eighty locations in nine districts of the southern Indian state of Tamil Nadu. Twelve complete sequence of coat protein genes of the resident geminiviruses, comprising 256 amino acid residues were generated from the above samples, which indicated changes at only six positions. RCA followed by RFLP of the 80 samples indicated that most samples (47) contained only SLCMV, followed by 8, which were infected jointly with ICMV and SLCMV. In 11 samples, the pattern did not match the expected patterns from either of the two viruses and hence, were variants. Sequence analysis of an average of 700 nucleotides from 31 RCA-generated fragments of the variants indicated identities of 97-99% with the sequence of a previously reported infectious clone of SLCMV. The evidence suggests low levels of genetic variability in the begomoviruses infecting cassava, mainly in the form of scattered single nucleotide changes.

5.
Virus Res ; 217: 38-46, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-26948262

RESUMEN

Sri Lankan cassava mosaic virus (SLCMV) is bipartite begomovirus infecting cassava in India and Sri Lanka. Interestingly, the DNA-A component of the SLCMV alone is able to infect Nicotiana benthamiana causing symptoms of upward leaf rolling and stunting. One of the differences between monopartite and bipartite begomoviruses is the requirement of Coat Protein (CP) for infectivity; CP being essential for the former, but dispensable in the latter. This investigation was aimed to determine the importance of CP in the infectivity of the bipartite SLCMV, behaving as a monopartite virus in N. benthamiana. We tested CP-null mutants, single amino acid replacement mutants and double, triple and quadruple combinations of the above in SLCMV DNA-A, for infectivity, symptom development and viral DNA accumulation in N. benthamiana. While CP-null mutants were non-infectious, a majority of the single amino acid replacement mutants and their combinations retained infectivity, some with attenuated symptoms and reduced viral titers. Some of the combined mutations restored the attenuated symptoms to wild type levels. Some of the mutations were predicted to cause changes in the secondary structure of the CP, which roughly correlated with the attenuation of symptoms and the reduction in viral titers.


Asunto(s)
Begomovirus/patogenicidad , Proteínas de la Cápside/química , Nicotiana/virología , Enfermedades de las Plantas/virología , Carga Viral , Aminoácidos/análisis , Aminoácidos/fisiología , Begomovirus/química , Begomovirus/genética , Proteínas de la Cápside/genética , Proteínas de la Cápside/fisiología , Mutagénesis Sitio-Dirigida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...