Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Prod Res ; 36(10): 2610-2614, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-33858276

RESUMEN

The vegetative chemical constituent, indol-3-carbinol (I-3-C) studied for its cardioprotective potential in male Sprague dawley rats. The I-3-C at 20 mg/Kg b.w, p.o significantly (p < 0.001) attenuated the high salt induced hypertrophy and produced antihypertensive effect (p < 0.001) as similar to losartan. Further, it significantly reduced the levels of C-reactive protein (p < 0.05), creatinine kinases isoenzyme (p < 0.01), serum lactate dehydrogenase (p < 0.05), myeloperoxidase (p < 0.01) and hydroxyproline (p < 0.01), subsequently increased the nitric oxide level (p < 0.05). The carotid ligation for vascular reactivity against vasopressors revealed a lesser magnitude of change (p < 0.05) in invasive blood pressure for I-3-C, compared to high salt treated animals (p < 0.001). In histology of heart tissue also supported the cardioprotective effect of I-3-C. In silico molecular docking of I-3-C on muscarinic receptor-2 showed the amino acid interaction as similar to acetylcholine.


Asunto(s)
Metanol , Receptores Muscarínicos , Animales , Presión Sanguínea , Hipertrofia , Masculino , Simulación del Acoplamiento Molecular , Ratas , Ratas Sprague-Dawley
2.
Futur J Pharm Sci ; 7(1): 56, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33686369

RESUMEN

BACKGROUND: Despite the various strategies undertaken in the clinical practice, the mortality rate due to antibiotic-resistant microbes has been markedly increasing worldwide. In addition to multidrug-resistant (MDR) microbes, the "ESKAPE" bacteria are also emerging. Of course, the infection caused by ESKAPE cannot be treated even with lethal doses of antibiotics. Now, the drug resistance is also more prevalent in antiviral, anticancer, antimalarial and antifungal chemotherapies. MAIN BODY: To date, in the literature, the quantum of research reported on the discovery strategies for new antibiotics is remarkable but the milestone is still far away. Considering the need of the updated strategies and drug discovery approaches in the area of drug resistance among researchers, in this communication, we consolidated the insights pertaining to new drug development against drug-resistant microbes. It includes drug discovery void, gene paradox, transposon mutagenesis, vitamin biosynthesis inhibition, use of non-conventional media, host model, target through quorum sensing, genomic-chemical network, synthetic viability to targets, chemical versus biological space, combinational approach, photosensitization, antimicrobial peptides and transcriptome profiling. Furthermore, we optimally briefed about antievolution drugs, nanotheranostics and antimicrobial adjuvants and then followed by twelve selected new feasible drug targets for new drug design against drug resistance. Finally, we have also tabulated the chemical structures of potent molecules against antimicrobial resistance. CONCLUSION: It is highly recommended to execute the anti-drug resistance research as integrated approach where both molecular and genetic research needs to be as integrative objective of drug discovery. This is time to accelerate new drug discovery research with advanced genetic approaches instead of conventional blind screening.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA