Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nature ; 563(7731): 416-420, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30429545

RESUMEN

Ribonucleotide reductase (RNR) catalyses the only known de novo pathway for the production of all four deoxyribonucleotides that are required for DNA synthesis1,2. It is essential for all organisms that use DNA as their genetic material and is a current drug target3,4. Since the discovery that iron is required for function in the aerobic, class I RNR found in all eukaryotes and many bacteria, a dinuclear metal site has been viewed as necessary to generate and stabilize the catalytic radical that is essential for RNR activity5-7. Here we describe a group of RNR proteins in Mollicutes-including Mycoplasma pathogens-that possess a metal-independent stable radical residing on a modified tyrosyl residue. Structural, biochemical and spectroscopic characterization reveal a stable 3,4-dihydroxyphenylalanine (DOPA) radical species that directly supports ribonucleotide reduction in vitro and in vivo. This observation overturns the presumed requirement for a dinuclear metal site in aerobic ribonucleotide reductase. The metal-independent radical requires new mechanisms for radical generation and stabilization, processes that are targeted by RNR inhibitors. It is possible that this RNR variant provides an advantage under metal starvation induced by the immune system. Organisms that encode this type of RNR-some of which are developing resistance to antibiotics-are involved in diseases of the respiratory, urinary and genital tracts. Further characterization of this RNR family and its mechanism of cofactor generation will provide insight into new enzymatic chemistry and be of value in devising strategies to combat the pathogens that utilize it. We propose that this RNR subclass is denoted class Ie.


Asunto(s)
Dihidroxifenilalanina/química , Dihidroxifenilalanina/metabolismo , Metales , Mycoplasma/metabolismo , Ribonucleótidos/metabolismo , Secuencia de Aminoácidos , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Sistema Inmunológico/metabolismo , Hierro/metabolismo , Metales/metabolismo , Modelos Moleculares , Mycoplasma/efectos de los fármacos , Mycoplasma/enzimología , Mycoplasma/genética , Operón/genética , Oxidación-Reducción , Ribonucleótido Reductasas/química , Ribonucleótido Reductasas/metabolismo , Ribonucleótidos/química , Tirosina/química , Tirosina/metabolismo
2.
Phys Chem Chem Phys ; 19(45): 30316-30331, 2017 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-28951896

RESUMEN

Matrix metalloproteinases (MMP) are an important family of proteases which catalyze the degradation of extracellular matrix components. While the mechanism of peptide cleavage is well established, the process of enzyme regeneration, which represents the rate limiting step of the catalytic cycle, remains unresolved. This step involves the loss of the newly formed N-terminus (amine) and C-terminus (carboxylate) protein fragments from the site of catalysis coupled with the inclusion of one or more solvent waters. Here we report a novel crystal structure of membrane type I MMP (MT1-MMP or MMP-14), which includes a small peptide bound at the catalytic Zn site via its C-terminus. This structure models the initial product state formed immediately after peptide cleavage but before the final proton transfer to the bound amine; the amine is not present in our system and as such proton transfer cannot occur. Modeling of the protein, including earlier structural data of Bertini and coworkers [I. Bertini, et al., Angew. Chem., Int. Ed., 2006, 45, 7952-7955], suggests that the C-terminus of the peptide is positioned to form an H-bond network to the amine site, which is mediated by a single oxygen of the functionally important Glu240 residue, facilitating efficient proton transfer. Additional quantum chemical calculations complemented with magneto-optical and magnetic resonance spectroscopies clarify the role of two additional, non-catalytic first coordination sphere waters identified in the crystal structure. One of these auxiliary waters acts to stabilize key intermediates of the reaction, while the second is proposed to facilitate C-fragment release, triggered by protonation of the amine. Together these results complete the enzymatic cycle of MMPs and provide new design criteria for inhibitors with improved efficacy.


Asunto(s)
Metaloproteinasa 14 de la Matriz/química , Inhibidores de la Metaloproteinasa de la Matriz/química , Modelos Moleculares , Conformación Proteica , Sitios de Unión , Catálisis , Dominio Catalítico , Metaloproteinasa 14 de la Matriz/metabolismo , Solventes
3.
J Inorg Biochem ; 162: 164-177, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27138102

RESUMEN

A manganese/iron cofactor which performs multi-electron oxidative chemistry is found in two classes of ferritin-like proteins, the small subunit (R2) of class Ic ribonucleotide reductase (R2c) and the R2-like ligand-binding oxidase (R2lox). It is unclear how a heterodimeric Mn/Fe metallocofactor is assembled in these two related proteins as opposed to a homodimeric Fe/Fe cofactor, especially considering the structural similarity and proximity of the two metal-binding sites in both protein scaffolds and the similar first coordination sphere ligand preferences of MnII and FeII. Using EPR and Mössbauer spectroscopies as well as X-ray anomalous dispersion, we examined metal loading and cofactor activation of both proteins in vitro (in solution). We find divergent cofactor assembly mechanisms for the two systems. In both cases, excess MnII promotes heterobimetallic cofactor assembly. In the absence of FeII, R2c cooperatively binds MnII at both metal sites, whereas R2lox does not readily bind MnII at either site. Heterometallic cofactor assembly is favored at substoichiometric FeII concentrations in R2lox. FeII and MnII likely bind to the protein in a stepwise fashion, with FeII binding to site 2 initiating cofactor assembly. In R2c, however, heterometallic assembly is presumably achieved by the displacement of MnII by FeII at site 2. The divergent metal loading mechanisms are correlated with the putative in vivo functions of R2c and R2lox, and most likely with the intracellular MnII/FeII concentrations in the host organisms from which they were isolated.


Asunto(s)
Proteínas Bacterianas/química , Geobacillus/química , Hierro/química , Manganeso/química , Oxidorreductasas/química , Ribonucleótido Reductasas/química , Saccharopolyspora/química , Proteínas Bacterianas/genética , Clonación Molecular , Coenzimas/química , Dimerización , Espectroscopía de Resonancia por Spin del Electrón , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Modelos Moleculares , Oxidación-Reducción , Oxidorreductasas/genética , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Ribonucleótido Reductasas/genética , Soluciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA