Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(47): 29914-29924, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33168737

RESUMEN

Neuropeptides are important for regulating numerous neural functions and behaviors. Release of neuropeptides requires long-lasting, high levels of cytosolic Ca2+ However, the molecular regulation of neuropeptide release remains to be clarified. Recently, Stac3 was identified as a key regulator of L-type Ca2+ channels (CaChs) and excitation-contraction coupling in vertebrate skeletal muscles. There is a small family of stac genes in vertebrates with other members expressed by subsets of neurons in the central nervous system. The function of neural Stac proteins, however, is poorly understood. Drosophila melanogaster contain a single stac gene, Dstac, which is expressed by muscles and a subset of neurons, including neuropeptide-expressing motor neurons. Here, genetic manipulations, coupled with immunolabeling, Ca2+ imaging, electrophysiology, and behavioral analysis, revealed that Dstac regulates L-type CaChs (Dmca1D) in Drosophila motor neurons and this, in turn, controls the release of neuropeptides.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas de Drosophila/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neuronas Motoras/metabolismo , Unión Neuromuscular/metabolismo , Neuropéptidos/metabolismo , Animales , Animales Modificados Genéticamente , Técnicas de Observación Conductual , Conducta Animal , Drosophila melanogaster , Femenino , Microscopía Intravital , Larva , Masculino , Modelos Animales , Neuronas Motoras/citología , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Unión Neuromuscular/citología , Imagen Óptica , Técnicas de Placa-Clamp , Terminales Presinápticos/metabolismo
2.
Front Physiol ; 11: 573723, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33123029

RESUMEN

Stac3 regulates excitation-contraction coupling (EC coupling) in vertebrate skeletal muscles by regulating the L-type voltage-gated calcium channel (Cav channel). Recently a stac-like gene, Dstac, was identified in Drosophila and found to be expressed by both a subset of neurons and muscles. Here, we show that Dstac and Dmca1D, the Drosophila L-type Cav channel, are necessary for normal locomotion by larvae. Immunolabeling with specific antibodies against Dstac and Dmca1D found that Dstac and Dmca1D are expressed by larval body-wall muscles. Furthermore, Ca2+ imaging of muscles of Dstac and Dmca1D deficient larvae found that Dstac and Dmca1D are required for excitation-contraction coupling. Finally, Dstac appears to be required for normal expression levels of Dmca1D in body-wall muscles. These results suggest that Dstac regulates Dmca1D during EC coupling and thus muscle contraction.

3.
Nat Commun ; 9(1): 2389, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29921864

RESUMEN

Early during PNS regeneration, regenerating axons emerge from the proximal nerve stump, yet whether they extend simultaneously or whether pioneering axons establish a path for follower axons remains unknown. Moreover, the molecular mechanisms underlying robust regeneration are incompletely understood. Using live imaging, we demonstrate that in zebrafish pioneering axons establish a regenerative path for follower axons. We find this process requires the synaptic receptor lrp4, and in lrp4 mutants pioneers are unaffected while follower axons frequently stall at the injury gap, providing evidence for molecular diversity between pioneering and follower axons in regeneration. We demonstrate that Lrp4 promotes regeneration through an axon extrinsic mechanism and independent of membrane anchoring and MuSK co-receptor signaling essential for synaptic development. Finally, we show that Lrp4 coordinates the realignment of denervated Schwann cells with regenerating axons, consistent with a model by which Lrp4 is repurposed to promote sustained peripheral nerve regeneration via axon-glia interactions.


Asunto(s)
Proteínas Relacionadas con Receptor de LDL/metabolismo , Regeneración Nerviosa , Traumatismos de los Nervios Periféricos/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Axones/metabolismo , Axones/fisiología , Proteínas de Homeodominio , Proteínas Relacionadas con Receptor de LDL/genética , Microscopía Confocal , Mutación , Neuroglía/metabolismo , Neuroglía/fisiología , Traumatismos de los Nervios Periféricos/genética , Traumatismos de los Nervios Periféricos/fisiopatología , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Células de Schwann/metabolismo , Células de Schwann/fisiología , Imagen de Lapso de Tiempo , Pez Cebra , Proteínas de Pez Cebra/genética
4.
Chronobiol Int ; 35(7): 1016-1026, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29621409

RESUMEN

The genetic, molecular and neuronal mechanism underlying circadian activity rhythms is well characterized in the brain of Drosophila. The small ventrolateral neurons (s-LNVs) and pigment dispersing factor (PDF) expressed by them are especially important for regulating circadian locomotion. Here we describe a novel gene, Dstac, which is similar to the stac genes found in vertebrates that encode adaptor proteins, which bind and regulate L-type voltage-gated Ca2+ channels (CaChs). We show that Dstac is coexpressed with PDF by the s-LNVs and regulates circadian activity. Furthermore, the L-type CaCh, Dmca1D, appears to be expressed by the s-LNVs. Since vertebrate Stac3 regulates an L-type CaCh we hypothesize that Dstac regulates Dmca1D in s-LNVs and circadian activity.


Asunto(s)
Relojes Biológicos/fisiología , Encéfalo/metabolismo , Ritmo Circadiano/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/metabolismo , Péptidos y Proteínas de Señalización Intracelular/fisiología , Locomoción/fisiología , Animales , Relojes Biológicos/genética , Ritmo Circadiano/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Actividad Motora/fisiología , Neuronas/metabolismo
5.
Traffic ; 18(9): 622-632, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28697281

RESUMEN

Contraction of skeletal muscle is initiated by excitation-contraction (EC) coupling during which membrane voltage is transduced to intracellular Ca2+ release. EC coupling requires L-type voltage gated Ca2+ channels (the dihydropyridine receptor or DHPR) located at triads, which are junctions between the transverse (T) tubule and sarcoplasmic reticulum (SR) membranes, that sense membrane depolarization in the T tubule membrane. Reduced EC coupling is associated with ageing, and disruptions of EC coupling result in congenital myopathies for which there are few therapies. The precise localization of DHPRs to triads is critical for EC coupling, yet trafficking of the DHPR to triads is not well understood. Using dynamic imaging of zebrafish muscle fibers, we find that DHPR is transported along the longitudinal SR in a microtubule-independent mechanism. Furthermore, transport of DHPR in the SR membrane is differentially affected in null mutants of Stac3 or DHPRß, two essential components of EC coupling. These findings reveal previously unappreciated features of DHPR motility within the SR prior to assembly at triads.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Canales de Calcio Tipo L/metabolismo , Músculo Esquelético/metabolismo , Retículo Sarcoplasmático/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Acoplamiento Excitación-Contracción/fisiología , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Pez Cebra
6.
Zebrafish ; 14(4): 311-321, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28488934

RESUMEN

The zebrafish curly fry (cfy) mutation leads to a dramatic increase in mitotic index and cell death starting during neural tube formation. The mutant phenotype is cell autonomous and does not result from defects in apical/basal polarity within the neuroepithelium. The increase in mitotic index could be due to increased proliferation or cell cycle arrest in mitosis. cfy embryos were analyzed to examine these two possibilities. By labeling embryos with a pulse of BrdU and anti-phospho-histone 3 and examining the DNA content by fluorescence activated cell sorting, we show that cfy mutants exhibit no increase in proliferation, but a significant increase in the number of cells arrested in mitosis. Furthermore, time-lapse microscopy in vivo confirmed that a great majority of dividing cells arrest during mitosis and that these mitotically arrested cells die in cfy embryos. Finally, immunostaining and confocal microscopy in cfy mutant embryos revealed that mitotic cells in mutants contain aberrant centrosomes and often exhibit monopolar spindles, thereby leading to mitotic cell cycle arrest. Our results suggest that the cfy gene is required for proper centrosome assembly and mitotic spindle formation, therefore critical for normal cell division.


Asunto(s)
Centrosoma/fisiología , Mitosis/fisiología , Huso Acromático/fisiología , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/genética , Proliferación Celular , Células Cultivadas , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mutación , Pez Cebra/embriología
7.
Proc Natl Acad Sci U S A ; 114(2): E228-E236, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28003463

RESUMEN

Skeletal muscle contractions are initiated by an increase in Ca2+ released during excitation-contraction (EC) coupling, and defects in EC coupling are associated with human myopathies. EC coupling requires communication between voltage-sensing dihydropyridine receptors (DHPRs) in transverse tubule membrane and Ca2+ release channel ryanodine receptor 1 (RyR1) in the sarcoplasmic reticulum (SR). Stac3 protein (SH3 and cysteine-rich domain 3) is an essential component of the EC coupling apparatus and a mutation in human STAC3 causes the debilitating Native American myopathy (NAM), but the nature of how Stac3 acts on the DHPR and/or RyR1 is unknown. Using electron microscopy, electrophysiology, and dynamic imaging of zebrafish muscle fibers, we find significantly reduced DHPR levels, functionality, and stability in stac3 mutants. Furthermore, stac3NAM myofibers exhibited increased caffeine-induced Ca2+ release across a wide range of concentrations in the absence of altered caffeine sensitivity as well as increased Ca2+ in internal stores, which is consistent with increased SR luminal Ca2+ These findings define critical roles for Stac3 in EC coupling and human disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Canales de Calcio Tipo L/fisiología , Fibras Musculares Esqueléticas/fisiología , Canal Liberador de Calcio Receptor de Rianodina/fisiología , Proteínas de Pez Cebra/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Animales Modificados Genéticamente , Cafeína/farmacología , Calcio , Embrión no Mamífero , Microscopía Electrónica , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/ultraestructura , Mutación , Miotonía Congénita , Pez Cebra , Proteínas de Pez Cebra/genética
8.
Proc Natl Acad Sci U S A ; 112(9): 2859-64, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25691753

RESUMEN

Following their synthesis in the endoplasmic reticulum (ER), voltage-gated sodium channels (NaV) are transported to the membranes of excitable cells, where they often cluster, such as at the axon initial segment of neurons. Although the mechanisms by which NaV channels form and maintain clusters have been extensively examined, the processes that govern their transport and degradation have received less attention. Our entry into the study of these processes began with the isolation of a new allele of the zebrafish mutant alligator, which we found to be caused by mutations in the gene encoding really interesting new gene (RING) finger protein 121 (RNF121), an E3-ubiquitin ligase present in the ER and cis-Golgi compartments. Here we demonstrate that RNF121 facilitates two opposing fates of NaV channels: (i) ubiquitin-mediated proteasome degradation and (ii) membrane localization when coexpressed with auxiliary NaVß subunits. Collectively, these results indicate that RNF121 participates in the quality control of NaV channels during their synthesis and subsequent transport to the membrane.


Asunto(s)
Proteolisis , Dominios RING Finger , Ubiquitina-Proteína Ligasas/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Secuencia de Bases , Membrana Celular/genética , Membrana Celular/metabolismo , Datos de Secuencia Molecular , Mutación , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Transporte de Proteínas/fisiología , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Canales de Sodio Activados por Voltaje/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
9.
Gene Expr Patterns ; 13(8): 335-42, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23830982

RESUMEN

Vasotocin/vasopressin is a neuropeptide that regulates social and reproductive behaviors in a variety of animals including fish. Arginine vasotocin (AVT) is expressed by cells in the ventral hypothalamic and preoptic areas in the diencephalon during embryogenesis in zebrafish suggesting that vasotocin might mediate other functions within the CNS prior to the development of social and reproductive behaviors. In order to examine potential early roles for vasotocin we cloned two zebrafish vasotocin receptors homologous to AVPR1a. The receptors are expressed primarily in the CNS in similar but generally non-overlapping patterns. Both receptors are expressed in the forebrain, midbrain and hindbrain by larval stage. Of note, AVTR1a-expressing neurons in the hindbrain appear to be contacted by the axons of preoptic neurons in the forebrain that include avt+ neurons and sensory axons in the lateral longitudinal fasciculus (LLF). Furthermore, AVTR1a-expressing hindbrain neurons extend axons into the medial longitudinal fasciculus (MLF) that contains axons of many neurons thought to be involved in locomotor responses to sensory stimulation. One hypothesis consistent with this anatomy is that AVT signaling mediates or gates sensory input to motor circuits in the hindbrain and spinal cord.


Asunto(s)
Prosencéfalo/metabolismo , Receptores de Vasopresinas/metabolismo , Rombencéfalo/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Regulación del Desarrollo de la Expresión Génica , Masculino , Mesencéfalo/embriología , Mesencéfalo/metabolismo , Datos de Secuencia Molecular , Especificidad de Órganos , Filogenia , Prosencéfalo/citología , Prosencéfalo/embriología , Receptores de Vasopresinas/química , Receptores de Vasopresinas/genética , Rombencéfalo/citología , Rombencéfalo/embriología , Homología de Secuencia de Aminoácido , Médula Espinal/embriología , Médula Espinal/metabolismo , Pez Cebra/embriología , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética
10.
Nat Commun ; 4: 1952, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23736855

RESUMEN

Excitation-contraction coupling, the process that regulates contractions by skeletal muscles, transduces changes in membrane voltage by activating release of Ca(2+) from internal stores to initiate muscle contraction. Defects in excitation-contraction coupling are associated with muscle diseases. Here we identify Stac3 as a novel component of the excitation-contraction coupling machinery. Using a zebrafish genetic screen, we generate a locomotor mutation that is mapped to stac3. We provide electrophysiological, Ca(2+) imaging, immunocytochemical and biochemical evidence that Stac3 participates in excitation-contraction coupling in muscles. Furthermore, we reveal that a mutation in human STAC3 is the genetic basis of the debilitating Native American myopathy (NAM). Analysis of NAM stac3 in zebrafish shows that the NAM mutation decreases excitation-contraction coupling. These findings enhance our understanding of both excitation-contraction coupling and the pathology of myopathies.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Fisura del Paladar/genética , Fisura del Paladar/fisiopatología , Acoplamiento Excitación-Contracción , Hipertermia Maligna/genética , Hipertermia Maligna/fisiopatología , Mutación/genética , Miotonía Congénita/genética , Miotonía Congénita/fisiopatología , Proteínas del Tejido Nervioso/genética , Proteínas de Pez Cebra/genética , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Alelos , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Embrión no Mamífero/metabolismo , Humanos , Datos de Secuencia Molecular , Mutación Missense/genética , Miofibrillas/metabolismo , Miofibrillas/ultraestructura , Miotonía Congénita/patología , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Especificidad de Órganos/genética , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Natación , Tacto , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo
11.
Brain ; 135(Pt 4): 1115-27, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22418739

RESUMEN

The skeletal muscle ryanodine receptor is an essential component of the excitation-contraction coupling apparatus. Mutations in RYR1 are associated with several congenital myopathies (termed RYR1-related myopathies) that are the most common non-dystrophic muscle diseases of childhood. Currently, no treatments exist for these disorders. Although the primary pathogenic abnormality involves defective excitation-contraction coupling, other abnormalities likely play a role in disease pathogenesis. In an effort to discover novel pathogenic mechanisms, we analysed two complementary models of RYR1-related myopathies, the relatively relaxed zebrafish and cultured myotubes from patients with RYR1-related myopathies. Expression array analysis in the zebrafish disclosed significant abnormalities in pathways associated with cellular stress. Subsequent studies focused on oxidative stress in relatively relaxed zebrafish and RYR1-related myopathy myotubes and demonstrated increased oxidant activity, the presence of oxidative stress markers, excessive production of oxidants by mitochondria and diminished survival under oxidant conditions. Exposure to the antioxidant N-acetylcysteine reduced oxidative stress and improved survival in the RYR1-related myopathies human myotubes ex vivo and led to significant restoration of aspects of muscle function in the relatively relaxed zebrafish, thereby confirming its efficacy in vivo. We conclude that oxidative stress is an important pathophysiological mechanism in RYR1-related myopathies and that N-acetylcysteine is a successful treatment modality ex vivo and in a vertebrate disease model. We propose that N-acetylcysteine represents the first potential therapeutic strategy for these debilitating muscle diseases.


Asunto(s)
Acetilcisteína/uso terapéutico , Antioxidantes/uso terapéutico , Enfermedades Musculares/tratamiento farmacológico , Enfermedades Musculares/metabolismo , Estrés Oxidativo/efectos de los fármacos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Acetofenonas/farmacología , Animales , Animales Modificados Genéticamente , Conducta Animal , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Humanos , Indometacina/farmacología , Larva , Análisis por Micromatrices , Microscopía Electrónica de Transmisión , Mitocondrias/ultraestructura , Contracción Muscular/genética , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/ultraestructura , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Mutación/genética , Estrés Oxidativo/genética , Canal Liberador de Calcio Receptor de Rianodina/genética , Pez Cebra
12.
J Biol Chem ; 287(2): 1080-9, 2012 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-22075003

RESUMEN

In many tissues and organs, connexin proteins assemble between neighboring cells to form gap junctions. These gap junctions facilitate direct intercellular communication between adjoining cells, allowing for the transmission of both chemical and electrical signals. In rodents, gap junctions are found in differentiating myoblasts and are important for myogenesis. Although gap junctions were once believed to be absent from differentiated skeletal muscle in mammals, recent studies in teleosts revealed that differentiated muscle does express connexins and is electrically coupled, at least at the larval stage. These findings raised questions regarding the functional significance of gap junctions in differentiated muscle. Our analysis of gap junctions in muscle began with the isolation of a zebrafish motor mutant that displayed weak coiling at day 1 of development, a behavior known to be driven by slow-twitch muscle (slow muscle). We identified a missense mutation in the gene encoding Connexin 39.9. In situ hybridization found connexin 39.9 to be expressed by slow muscle. Paired muscle recordings uncovered that wild-type slow muscles are electrically coupled, whereas mutant slow muscles are not. The further examination of cellular activity revealed aberrant, arrhythmic touch-evoked Ca(2+) transients in mutant slow muscle and a reduction in the number of muscle fibers contracting in response to touch in mutants. These results indicate that Connexin 39.9 facilitates the spreading of neuronal inputs, which is irregular during motor development, beyond the muscle cells and that gap junctions play an essential role in the efficient recruitment of slow muscle fibers.


Asunto(s)
Conexinas/metabolismo , Proteínas Musculares/metabolismo , Mutación Missense , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Secuencia de Bases , Conexinas/genética , Uniones Comunicantes/genética , Uniones Comunicantes/metabolismo , Regulación de la Expresión Génica/genética , Datos de Secuencia Molecular , Fibras Musculares de Contracción Lenta , Proteínas Musculares/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
13.
J Neurosci ; 31(32): 11633-44, 2011 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-21832193

RESUMEN

Mutations in the gene encoding TRPM7 (trpm7), a member of the Transient Receptor Potential (TRP) superfamily of cation channels that possesses an enzymatically active kinase at its C terminus, cause the touch-unresponsive zebrafish mutant touchdown. We identified and characterized a new allele of touchdown, as well as two previously reported alleles, and found that all three alleles harbor mutations that abolish channel activity. Through the selective restoration of TRPM7 expression in sensory neurons, we found that TRPM7's kinase activity and selectivity for divalent cations over monovalent cations were dispensable for touch-evoked activation of escape behaviors in zebrafish. Additional characterization revealed that sensory neurons were present and capable of responding to tactile stimuli in touchdown mutants, indicating that TRPM7 is not required for sensory neuron survival or mechanosensation. Finally, exposure to elevated concentrations of divalent cations was found to restore touch-evoked behaviors in touchdown mutants. Collectively, these findings are consistent with a role for zebrafish TRPM7 within sensory neurons in the modulation of neurotransmitter release at central synapses, similar to that proposed for mammalian TRPM7 at peripheral synapses.


Asunto(s)
Alelos , Reacción de Fuga/fisiología , Células Receptoras Sensoriales/fisiología , Canales Catiónicos TRPM/fisiología , Tacto/fisiología , Proteínas de Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Femenino , Sistema Nervioso Periférico/citología , Sistema Nervioso Periférico/metabolismo , Sistema Nervioso Periférico/fisiología , Proteínas Serina-Treonina Quinasas , Especificidad de la Especie , Canales Catiónicos TRPM/genética , Tacto/genética , Xenopus , Pez Cebra , Proteínas de Pez Cebra/genética
14.
J Neurosci ; 30(28): 9359-67, 2010 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-20631165

RESUMEN

The process by which light touch in vertebrates is transformed into an electrical response in cutaneous mechanosensitive neurons is a largely unresolved question. To address this question we undertook a forward genetic screen in zebrafish (Danio rerio) to identify mutants exhibiting abnormal touch-evoked behaviors, despite the presence of sensory neurons and peripheral neurites. One family, subsequently named touché, was found to harbor a recessive mutation which produced offspring that were unresponsive to light touch, but responded to a variety of other sensory stimuli. The optogenetic activation of motor behaviors by touché mutant sensory neurons expressing channelrhodopsin-2 suggested that the synaptic output of sensory neurons was intact, consistent with a defect in sensory neuron activation. To explore sensory neuron activation we developed an in vivo preparation permitting the precise placement of a combined electrical and tactile stimulating probe upon eGFP-positive peripheral neurites. In wild-type larva electrical and tactile stimulation of peripheral neurites produced action potentials detectable within the cell body. In a subset of these sensory neurons an underlying generator potential could be observed in response to subthreshold tactile stimuli. A closer examination revealed that the amplitude of the generator potential was proportional to the stimulus amplitude. When assayed touché mutant sensory neurons also responded to electrical stimulation of peripheral neurites similar to wild-type larvae, however tactile stimulation of these neurites failed to uncover a subset of sensory neurons possessing generator potentials. These findings suggest that touché is required for generator potentials, and that cutaneous mechanoreceptors with generator potentials are necessary for responsiveness to light touch in zebrafish.


Asunto(s)
Potenciales Evocados Somatosensoriales/fisiología , Células Receptoras Sensoriales/fisiología , Transducción de Señal/fisiología , Tacto/fisiología , Proteínas de Pez Cebra/genética , Animales , Electrofisiología , Red Nerviosa/fisiología , Neuronas Aferentes/fisiología , Estimulación Física , Pez Cebra/genética
15.
Dev Neurobiol ; 70(7): 508-22, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20225246

RESUMEN

A screen for zebrafish motor mutants identified two noncomplementing alleles of a recessive mutation that were named non-active (nav(mi89) and nav(mi130)). nav embryos displayed diminished spontaneous and touch-evoked escape behaviors during the first 3 days of development. Genetic mapping identified the gene encoding Na(V)1.6a (scn8aa) as a potential candidate for nav. Subsequent cloning of scn8aa from the two alleles of nav uncovered two missense mutations in Na(V)1.6a that eliminated channel activity when assayed heterologously. Furthermore, the injection of RNA encoding wild-type scn8aa rescued the nav mutant phenotype indicating that scn8aa was the causative gene of nav. In-vivo electrophysiological analysis of the touch-evoked escape circuit indicated that voltage-dependent inward current was decreased in mechanosensory neurons in mutants, but they were able to fire action potentials. Furthermore, tactile stimulation of mutants activated some neurons downstream of mechanosensory neurons but failed to activate the swim locomotor circuit in accord with the behavioral response of initial escape contractions but no swimming. Thus, mutant mechanosensory neurons appeared to respond to tactile stimulation but failed to initiate swimming. Interestingly fictive swimming could be initiated pharmacologically suggesting that a swim circuit was present in mutants. These results suggested that Na(V)1.6a was required for touch-induced activation of the swim locomotor network.


Asunto(s)
Sistema Nervioso Central/embriología , Red Nerviosa/embriología , Canales de Sodio/fisiología , Natación/fisiología , Tacto/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Potenciales de Acción/genética , Potenciales de Acción/fisiología , Animales , Conducta Animal/fisiología , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/metabolismo , Mapeo Cromosómico , Femenino , Masculino , Mecanorreceptores/citología , Mecanorreceptores/metabolismo , Mutagénesis Sitio-Dirigida , Mutación Missense/genética , Canal de Sodio Activado por Voltaje NAV1.6 , Red Nerviosa/crecimiento & desarrollo , Red Nerviosa/metabolismo , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/metabolismo , Canales de Sodio/genética , Tacto/genética , Pez Cebra/crecimiento & desarrollo , Pez Cebra/fisiología , Proteínas de Pez Cebra/genética
16.
PLoS Genet ; 5(2): e1000372, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19197364

RESUMEN

Myotubularin is a lipid phosphatase implicated in endosomal trafficking in vitro, but with an unknown function in vivo. Mutations in myotubularin cause myotubular myopathy, a devastating congenital myopathy with unclear pathogenesis and no current therapies. Myotubular myopathy was the first described of a growing list of conditions caused by mutations in proteins implicated in membrane trafficking. To advance the understanding of myotubularin function and disease pathogenesis, we have created a zebrafish model of myotubular myopathy using morpholino antisense technology. Zebrafish with reduced levels of myotubularin have significantly impaired motor function and obvious histopathologic changes in their muscle. These changes include abnormally shaped and positioned nuclei and myofiber hypotrophy. These findings are consistent with those observed in the human disease. We demonstrate for the first time that myotubularin functions to regulate PI3P levels in a vertebrate in vivo, and that homologous myotubularin-related proteins can functionally compensate for the loss of myotubularin. Finally, we identify abnormalities in the tubulo-reticular network in muscle from myotubularin zebrafish morphants and correlate these changes with abnormalities in T-tubule organization in biopsies from patients with myotubular myopathy. In all, we have generated a new model of myotubular myopathy and employed this model to uncover a novel function for myotubularin and a new pathomechanism for the human disease that may explain the weakness associated with the condition (defective excitation-contraction coupling). In addition, our findings of tubuloreticular abnormalities and defective excitation-contraction coupling mechanistically link myotubular myopathy with several other inherited muscle diseases, most notably those due to ryanodine receptor mutations. Based on our findings, we speculate that congenital myopathies, usually considered entities with similar clinical features but very disparate pathomechanisms, may at their root be disorders of calcium homeostasis.


Asunto(s)
Fibras Musculares Esqueléticas/ultraestructura , Miopatías Estructurales Congénitas/etiología , Miopatías Estructurales Congénitas/patología , Proteínas Tirosina Fosfatasas no Receptoras/fisiología , Pez Cebra/genética , Animales , Modelos Animales de Enfermedad , Embrión no Mamífero/metabolismo , Técnica del Anticuerpo Fluorescente , Homeostasis , Humanos , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/metabolismo , Mutación , Miopatías Estructurales Congénitas/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/genética , Pez Cebra/metabolismo
17.
Front Mol Neurosci ; 2: 26, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-20161699

RESUMEN

Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo) mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR) beta subunit genes. These mutants exhibit a loss of glycinergic synaptic transmission due to a lack of synaptic aggregation of GlyRs. Due to the consequent loss of reciprocal inhibition of motor circuits between the two sides of the spinal cord, motor neurons activate simultaneously on both sides resulting in bilateral contraction of axial muscles of beo mutants, eliciting the so-called 'accordion' phenotype. Similar defects in GlyR subunit genes have been observed in several mammals and are the basis for human hyperekplexia/startle disease. By contrast, zebrafish shocked (sho) mutants have a defect in slc6a9, encoding GlyT1, a glycine transporter that is expressed by astroglial cells surrounding the glycinergic synapse in the hindbrain and spinal cord. GlyT1 mediates rapid uptake of glycine from the synaptic cleft, terminating synaptic transmission. In zebrafish sho mutants, there appears to be elevated extracellular glycine resulting in persistent inhibition of postsynaptic neurons and subsequent reduced motility, causing the 'twitch-once' phenotype. We review current knowledge regarding zebrafish 'accordion' and 'twitch-once' mutants, including beo and sho, and report the identification of a new alpha2 subunit that revises the phylogeny of zebrafish GlyRs.

18.
Dev Dyn ; 237(12): 3842-52, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19035348

RESUMEN

Voltage-gated calcium channels (VGCC) play important roles in electrically excitable cells and embryonic development. The VGCC beta subunits are essential for membrane localization of the channel and exert modulatory effects on channel functions. In mammals, the VGCC beta subunit gene family contains four members. In zebrafish, there appear to be seven VGCC beta subunits including the previously identified beta1 subunit. cDNAs for six additional VGCC beta subunit homologs were identified in zebrafish, their chromosomal locations determined and their expression patterns characterized during embryonic development. These six genes are primarily expressed in the nervous system with cacnb4a also expressed in the developing heart. Sequence homology, genomic synteny and expression patterns suggest that there are three pairs of duplicate genes for beta2, beta3, and beta4 in zebrafish with distinct expression patterns during embryonic development.


Asunto(s)
Canales de Calcio/metabolismo , Activación del Canal Iónico , Pez Cebra/embriología , Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Canales de Calcio/química , Canales de Calcio/clasificación , Canales de Calcio/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Filogenia , Subunidades de Proteína/química , Subunidades de Proteína/clasificación , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Retina/embriología , Retina/metabolismo , Alineación de Secuencia , Homología de Secuencia , Pez Cebra/genética
19.
Purinergic Signal ; 4(4): 383-92, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18850305

RESUMEN

Several zebrafish P2X receptors (zP2X(1), zP2X(2), and zP2X(5.1)) have been reported to produce little or no current although their mammalian orthologs produce functional homomeric receptors. We isolated new cDNA clones for these P2X receptors that revealed sequence variations in each. The new variants of zP2X(1) and zP2X(5.1) produced substantial currents when expressed by Xenopus oocytes, however the new variant of zP2X(2) was still nonfunctional. zP2X(2) lacks two lysine residues essential for ATP responsiveness in other P2X receptors; however introduction of these two lysines was insufficient to allow this receptor to function as a homotrimer. We also tested whether P2X signaling is required for myogenesis or synaptic communication at the zebrafish neuromuscular junction. We found that embryonic skeletal muscle expressed only one P2X receptor, P2X(5.1). Antisense knockdown of P2X(5.1) eliminated skeletal muscle responsiveness to ATP but did not prevent myogenesis or behaviors that require functional transmission at the neuromuscular junction.

20.
Curr Biol ; 18(2): 109-15, 2008 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-18207744

RESUMEN

The maintenance of a high density of postsynaptic receptors is essential for proper synaptic function. At the neuromuscular junction, acetylcholine receptor (AChR) aggregation is induced by nerve-clustering factors and mediated by scaffolding proteins. Although the mechanisms underlying AChR clustering have been extensively studied, the role that the receptors themselves play in the clustering process and how they are organized with scaffolding proteins is not well understood. Here, we report that the exposure of AChRs labeled with Alexa 594 conjugates to relatively low-powered laser light caused an effect similar to chromaphore-assisted light inactivation (CALI) , which resulted in the unexpected dissipation of the illuminated AChRs from clusters on cultured myotubes. This technique enabled us to demonstrate that AChR removal from illuminated regions induced the removal of scaffolding proteins and prevented the accumulation of new AChRs and associated scaffolding proteins. Further, the dissipation of clustered AChRs and scaffold was spatially restricted to the illuminated region and had no effect on neighboring nonilluminated AChRs. These results provide direct evidence that AChRs are essential for the local maintenance and accumulation of intracellular scaffolding proteins and suggest that the scaffold is organized into distinct modular units at AChR clusters.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Unión Neuromuscular/metabolismo , Receptores Colinérgicos/metabolismo , Animales , Ratones , Microscopía Confocal , Proteínas Musculares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA