Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 352: 141321, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38307339

RESUMEN

This work presents the synthesis of Pd-loaded microporous titanosilicalite-1 (Pd/TS-1) and Pd-loaded hierarchical titanosilicalite-1 (Pd/HTS-1) with abundant mesopores (2-30 nm) inside the framework via hydrothermal method using polydiallydimethyl ammonium chloride as the non-surfactant mesopore template. XRD, N2 sorption, FT-IR, FESEM-EDX, TEM, XPS, and DR-UV techniques were used to characterize the morphological and physicochemical properties of the synthesized materials. These materials were tested as heterogeneous catalysts, along with tetrapropylammonium bromide as co-catalyst, for cycloaddition reactions of CO2 with epoxides to produce cyclic carbonates. It was found that the epoxide conversions were influenced by acidity and pore accessibility of the catalysts. Using Pd/HTS-1 facilitated bulky substrates to access active sites, resulting in higher conversions than Pd/TS-1. Over 85 % conversions were achieved for at least five consecutive cycles without significant loss in catalytic activity. The interaction between the Pd active surfaces and epichlorohydrin (ECH) was further studied by DFT calculations. The existence of Pd(200) was more influential on adsorbing epichlorohydrin (ECH) and subsequent formation of dissociated ECH (DECH) intermediate than Pd(111) surface. However, Pd(111) was dominant in enhancing the activity of DECH species for capturing CO2. Therefore, the co-existence of Pd(200) and Pd(111) surfaces was needed for cycloaddition of CO2 with ECH.


Asunto(s)
Epiclorhidrina , Compuestos Epoxi , Silicatos , Titanio , Dióxido de Carbono , Reacción de Cicloadición , Espectroscopía Infrarroja por Transformada de Fourier
2.
Chem Sci ; 15(3): 854-878, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38239694

RESUMEN

Electrocatalytic and thermocatalytic CO2 conversions provide promising routes to realize global carbon neutrality, and the development of corresponding advanced catalysts is important but challenging. Hollow-structured carbon (HSC) materials with striking features, including unique cavity structure, good permeability, large surface area, and readily functionalizable surface, are flexible platforms for designing high-performance catalysts. In this review, the topics range from the accurate design of HSC materials to specific electrocatalytic and thermocatalytic CO2 conversion applications, aiming to address the drawbacks of conventional catalysts, such as sluggish reaction kinetics, inadequate selectivity, and poor stability. Firstly, the synthetic methods of HSC, including the hard template route, soft template approach, and self-template strategy are summarized, with an evaluation of their characteristics and applicability. Subsequently, the functionalization strategies (nonmetal doping, metal single-atom anchoring, and metal nanoparticle modification) for HSC are comprehensively discussed. Lastly, the recent achievements of intriguing HSC-based materials in electrocatalytic and thermocatalytic CO2 conversion applications are presented, with a particular focus on revealing the relationship between catalyst structure and activity. We anticipate that the review can provide some ideas for designing highly active and durable catalytic systems for CO2 valorization and beyond.

3.
J Phys Chem Lett ; 14(6): 1528-1534, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36745105

RESUMEN

Hydrogenated molybdenum suboxide (HxMoO3-y) is a promising photothermal energy conversion (PEC) material. However, its charge carrier dynamics and underlying mechanisms remain unclear. Utilizing flash-photolysis time-resolved microwave conductivity, we investigated charge carrier-dielectric interactions in the Pt/HxMoO3-y composite. The charge recombination of H2-reduced Pt/HxMoO3-y was 2-3 orders of magnitude faster than that of Pt/MoO3, indicating efficient PEC. A complex photoconductivity study revealed that Pt/HxMoO3-y has two types of trapping mechanisms, Drude-Zener (DZ) and negative permittivity effect (NPE) modes, depending on the reduction temperature. Pt/HxMoO3-y reduced at 100 °C exhibited a dominant NPE owing to the electrical interaction of trapped charges with the surrounding ions and/or OH base. This polaronic trapped state retarded the PEC process. We found Pt/HxMoO3-y reduced at 200 °C to be optimal owing to the balanced suppression of the NPE and charge diffusion. This is the first report revealing the charge dynamics in hydrogenated metal oxides and their impacts on PEC processes.

4.
Chem Commun (Camb) ; 58(88): 12345-12348, 2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36260074

RESUMEN

Al-MIL-101-NH2, which was previously regarded as being inactive as a photocatalyst, produces hydrogen peroxide (H2O2) via O2 reduction under visible-light irradiation, accompanied by efficient suppression of undesired H2O2 decomposition. The low-coordination Lewis acid sites in trimetric Al-oxo clusters are crucial for the electron transfer to O2.

5.
Chem Commun (Camb) ; 58(61): 8466-8479, 2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35861347

RESUMEN

The localized surface plasmon resonance (LSPR) of noble metals has been investigated for decades for applications in various catalysis reactions and optical research studies, but its development has been hampered by inefficient light absorption and high costs. In comparison, the creation of less expensive semiconductors (metal oxides) with strong plasmonic absorption is an appealing option, particularly defective molybdenum oxide (HxMoO3-y) has received considerable attention and investigation as a promising plasmonic material for a variety of catalytic reactions (photocatalysis, thermocatalysis, photothermal catalysis, etc.).The LSPR effect of HxMoO3-y can be tuned throughout a broad spectrum range from visible to near-infrared (NIR) by altering the doping amount by electrochemical control, chemical reduction, or photochemical control. Notably, defects (oxygen vacancies) in HxMoO3-y arise in conjunction with the LSPR effect, resulting in the formation of unique and useful active sites in a range of catalytic processes. In this review, we explore the formation mechanism of HxMoO3-y with plasmonic features and discuss its applications in photocatalysis, thermocatalysis, and photothermal catalysis.

6.
Environ Sci Technol ; 56(4): 2617-2625, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35098712

RESUMEN

Fenton reaction has important implications in biology- and environment-related remediation. Hydroxyl radicals (•OH) and hydroxide (OH-) were formed by a reaction between Fe(II) and hydrogen peroxide (H2O2). The acidic H2O2/Fe(II/III) redox-induced low H2O2 utilization efficiency is the bottleneck of Fenton reaction. Electron paramagnetic resonance, surface-enhanced Raman scattering, and density functional theory calculation indicate that the unpaired electrons in the defects of carbon quantum dots (CQDs) and the carboxylic groups at the edge have a synergistic effect on CQDs Fenton-like catalysis. This leads to a 33-fold higher H2O2 utilization efficiency in comparison with Fe(II)/H2O2 Fenton reaction, and the pseudo-first-order reaction rate constant (kobs) increases 38-fold that of Fe(III)/H2O2 under equivalent conditions. The replacement of acidic H2O2/Fe(II/III) redox with CQD-mediated Fe(II/III) redox improves the sluggish Fe(II) generation. Highly effective production of •OH in CQDs-Fe(III)/H2O2 dramatically decreases the selectivity of toxic intermediate benzoquinone. The inorganic ions and dissolved organic matter (DOM) in real groundwater show negligible effects on the CQDs Fenton-like catalysis process. This work presents a process with a higher efficiency of utilization of H2O2in situ chemical oxidation (ISCO) to remove persistent organic pollutants.


Asunto(s)
Peróxido de Hidrógeno , Puntos Cuánticos , Carbono , Catálisis , Compuestos Férricos , Compuestos Ferrosos , Oxidación-Reducción
7.
ACS Appl Mater Interfaces ; 14(1): 2291-2300, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34967219

RESUMEN

Hydrogen spillover can assist the introduction of defects such as Ti3+ and concomitant oxygen vacancies (VO) in a TiO2 crystal, thereby inducing a new level below the conduction band to improve the conductivity of photogenerated electrons and the visible light absorption property of TiO2. Meanwhile, crystal facet engineering offers a promising approach to achieve improved activity by influencing the recombination step of the photogenerated electrons and holes. In this study, with the aim of achieving enhanced visible light-driven photocatalytic activity, rutile TiO2 nanorods with different aspect ratios were synthesized by crystal facet engineering, and Pt-deposited TiO2-x nanorods (Pt/TNR) were then obtained via reduction treatment assisted by hydrogen spillover. The reduction treatment at 200 °C induced the formation of surface Ti3+ exclusively, whereas surface Ti3+ and VO were formed by performing the reduction at 600 °C. The Pt/TNR with a higher aspect ratio reduced at 200 °C exhibited the highest activity in photocatalytic H2 production under visible light irradiation owing to the synergistic effect of the introduction of Ti3+ defects and the spatial charge carrier separation induced by crystal facet engineering.

8.
ACS Appl Mater Interfaces ; 13(41): 48669-48678, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34615345

RESUMEN

Defect engineering of metal oxides is a facile and promising strategy to improve their photocatalytic activity. In the present study, Pt/TiO2-x was prepared by a reduction treatment assisted by hydrogen spillover to pure rutile, anatase, and brookite and was subsequently used for hydrogen production from an aqueous methanol solution. With increasing reduction temperature, the photocatalytic activity of the rutile Pt/TiO2-x increased substantially, whereas the activity of anatase Pt/TiO2-x decreased and that of brookite Pt/TiO2-x was independent of the treatment temperature. Electron-spin resonance analysis revealed that rutile and brookite possess similar defect sites (Ti3+ and concomitant oxygen vacancy) after the reduction at 600 °C, whereas different resonance signals were observed for anatase after the reduction at 600 °C. During the reduction process, electrons donated from spillover hydrogen migrate between the conduction band and the inherent midgap states. This research demonstrates that the depth of the inherent midgap states, depending on the crystal phases, influences the generation of defects, which play a key role in the photocatalytic performance of Pt/TiO2-x.

9.
Chem Sci ; 12(29): 9902-9915, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34349963

RESUMEN

Production of methanol from anthropogenic carbon dioxide (CO2) is a promising chemical process that can alleviate both the environmental burden and the dependence on fossil fuels. In catalytic CO2 hydrogenation to methanol, reduction of CO2 to intermediate species is generally considered to be a crucial step. It is of great significance to design and develop advanced heterogeneous catalysts and to engineer the surface structures to promote CO2-to-methanol conversion. We herein report an oxygen-defective molybdenum sub-oxide coupled with Pt nanoparticles (Pt/H x MoO3-y ) which affords high methanol yield with a methanol formation rate of 1.53 mmol g-cat -1 h-1 in liquid-phase CO2 hydrogenation under relatively mild reaction conditions (total 4.0 MPa, 200 °C), outperforming other oxide-supported Pt catalysts in terms of both the yield and selectivity for methanol. Experiments and comprehensive analyses including in situ X-ray absorption fine structure (XAFS), in situ diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and density functional theory (DFT) calculations reveal that both abundant surface oxygen vacancies (VO) and the redox ability of Mo species in quasi-stable H x MoO3-y confer the catalyst with enhanced adsorption and activation capability to subsequently transform CO2 to methanol. Moreover, the Pt NPs act as H2 dissociation sites to regenerate oxygen vacancies and as hydrogenation sites for the CO intermediate to finally afford methanol. Based on the experimental and computational studies, an oxygen-vacancy-mediated "reverse Mars-van Krevelen (M-vK)" mechanism is proposed. This study affords a new strategy for the design and development of an efficient heterogeneous catalyst for CO2 conversion.

10.
Langmuir ; 37(17): 5376-5384, 2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-33881888

RESUMEN

Effects of morphology and exposed crystal planes of NiOx-decorated CeO2 (NiCeO2) nanostructured catalysts on activity during CO2 methanation were examined, using nanorod (NR), nanocube (NC), and nanooctahedron (NO) structures. The NiCeO2 nanorods (NiCeO2-NR) showed superior activity to NiCeO2-NC and NiCeO2-NO along with excellent selectivity for CH4. This material also demonstrated exceptional durability, with no significant loss of catalytic activity or structural change after use. Comprehensive physicochemical characterization as well as density functional theory calculations determined that the high performance of the NiCeO2-NR was closely related to the large quantity of surface oxygen vacancies and the high degree of reversibility associated with the Ce4+ ↔ Ce3+ redox cycle of the support. These effects originate from the enhanced reactivity of oxygen atoms on the (110) surfaces of the oxide compared with the (100) and (111) surfaces. This information is expected to assist in the rational design of practical catalysts for the activation of CO2 molecules and other important transformations.

11.
ChemSusChem ; 14(10): 2180-2187, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-33780153

RESUMEN

Loading of molecular catalyst on the surface of semiconductors is an attractive way to boost the water oxidation activity. As active sites, molecular water oxidation cocatalysts show increasing attraction and application possibility. In order to compare the advantages between molecular catalysts with non-noble and noble metals, the loading of the Fe(salen) and Ru(salen) as cocatalyst precursors on the surface of Ti-Fe2 O3 was investigated Quasi-Fe(salen) and Ru(salen) improved the photocurrent density by 1.5 and 1.7 times compared to that of the original Ti-Fe2 O3 photoanode, respectively. The quasi-Fe(salen) could improve the conductivity and reaction kinetics on the photoanode surface. By contrast, the notable advancements could be attributed to more reaction sites for quasi-Ru(salen) as cocatalysts. Thus, non-noble quasi-Fe(salen) is a promising cocatalyst to replace the noble metal salen, and further optimization can be expected with regard to the precise control of reaction sites.

12.
Sci Rep ; 11(1): 530, 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436711

RESUMEN

Biodiesel is of high interest due to increased demand for energy with the concern regarding more sustainable production processes. However, an inevitable by-product is glycerol. Hence, the conversion of this by-product to higher-value chemicals, especially 1,3-propanediol (1,3-PDO) via glycerol hydrogenolysis reaction, is one of the most effective pathways towards a profitable process. In general, this process is catalyzed by a highly active Pt-based catalyst supported on γ-Al2O3. However, its low 1,3-PDO selectivity and stability due to surface deactivation of such catalysts remained. This led to the surface modification by WOx to improve both the selectivity by means of the increased Brønsted acidity and the stability in terms of Pt leaching-resistance. Hence, we applied experimental and density functional theory (DFT)-based techniques to study the fundamentals of how WOx modified the catalytic performance in the Pt/γ-Al2O3 catalyst and provided design guidelines. The effects of WOx promoter on improved activity were due to the shifting of the total density of states towards the antibonding region evident by the total density of states (TDOS) profile. On the improved 1,3-PDO selectivity, the main reason was the increasing number of Brønsted acid sites due to the added WOx promoter. Interestingly, the stability improvement was due to the strong metal-support interaction (SMSI) that occurred in the catalyst, like typical high leaching-resistant catalysts. Also, the observed strong metal-support-promoter interaction (SMSPI) is an additional effect preventing leaching. The SMSPI stemmed from additional bonding between the WOx species and the Pt active site, which significantly strengthened Pt adsorption to support and a high electron transfer from both Pt and Al2O3 to WOx promoter. This suggested that the promising promoter for our reaction performed in the liquid phase would improve the stability if SMSI occurred, where the special case of the WOx promoter would even highly improve the stability through SMSPI. Nevertheless, various promoters that can promote SMSPI need investigations.

13.
Chem Asian J ; 15(13): 2005-2014, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32395889

RESUMEN

Catalytic diesel soot combustion was examined using a series of Mn2 O3 catalysts with different morphologies, including plate, prism, hollow spheres and powders. The plate-shaped Mn2 O3 (Mn2 O3 -plate) exhibited superior carbon soot combustion activity compared to the prism-shaped, hollow-structured and powdery Mn2 O3 under both tight and loose contact modes at soot combustion temperatures (T50 ) of 327 °C and 457 °C, respectively. Comprehensive characterization studies using scanning electron microscopy, scanning transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, temperature-programmed reduction and oxygen release measurements, revealed that the improved activity of Mn2 O3 -plate was mainly attributed to the high oxygen release rate of surface-adsorbed active oxygen species, which originated from oxygen vacancy sites introduced during the catalyst preparation, rather than specific surface-exposed planes. The study provides new insights for the design and synthesis of efficient oxidation catalysts for carbon soot combustion as well as for other oxidation reactions of harmful hydrocarbon compounds.

14.
Phys Chem Chem Phys ; 22(26): 14404-14414, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32436501

RESUMEN

As an environmentally friendly and renewable energy source, hydrogen peroxide (H2O2) could be produced photocatalytically through selective two-electron reduction of O2 using effective photocatalysts. Metal organic frameworks (MOFs), as hybrid porous materials consisting of organic linkers and metal oxide clusters, have aroused great interest in the design of effective catalysts for photocatalysis under visible light irradiation due to their unique properties, such as large surface area, good chemical stability, and diverse and tunable chemical components. In this perspective, we highlight our recent progress in the application of various MOF-based nanomaterials for photocatalytic H2O2 production from the selective two-electron reduction of O2 in a single-phase system (acetonitrile) and two-phase system (water/benzyl alcohol). Photocatalytic H2O2 production in the single-phase system achieved a higher activity using NiO as a cocatalyst of the MOF rather than Pt. Photocatalytic H2O2 production in the two-phase system using various hydrophobic MOFs showed further improved activity compared to the single-phase system. It has been possible to design a hydrophobic MOF-based photocatalyst with high activity and stability under recycling conditions. These studies gathered in this perspective revealed the novel application of MOFs in the field of energy production.

15.
Nanoscale ; 12(22): 11908-11915, 2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32467961

RESUMEN

MoS2 has been investigated as a low-cost alternative to Pt in the electrochemical hydrogen evolution reaction. One of the promising methods to further activate MoS2 is phase engineering. MoS2 generally exhibits two kinds of crystalline phases: hexagonal 2H phase and octahedral 1T phase. 1T-MoS2 exhibits much better chemical/physical properties than natural semiconductor 2H-MoS2. However, 1T-MoS2 is metastable and its synthesis is still a challenge. Hybrid 1T/2H-MoS2 has been synthesized under relatively mild conditions, but controlling the 1T/2H ratio is still an issue which has not been discussed in detail. In this study, the synthesis methods of hybrid phase 1T/2H-MoS2 with controllable 1T concentration are investigated. The electrochemical hydrogen evolution reaction is then evaluated for 1T/2H-MoS2 with different 1T concentrations by performing both experiments and theoretical calculations.

16.
Nanoscale ; 12(21): 11333-11363, 2020 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-32285073

RESUMEN

The development of advanced materials for heterogeneous catalytic applications requires fine control over the synthesis and structural parameters of the active site. Mesoporous silica materials have attracted increasing attention to be considered as an important class of nanostructured support materials in heterogeneous catalysis. Their large surface area, well-defined porous architecture and ability to incorporate metal atoms within the mesopores lead them to be a promising support material for designing a variety of different catalysts. In particular, SBA-15 mesoporous silica has its broad applicability in catalysis because of its comparatively thicker walls leading to higher thermal and mechanical stability. In this review article, various strategies to functionalize SBA-15 mesoporous silica have been reviewed with a view to evaluating its efficacy in different catalytic transformation reactions. Special attention has been given to the molecular engineering of the silica surface, within the framework and within the hexagonal mesoporous channels for anchoring metal oxides, single-site species and metal nanoparticles (NPs) serving as catalytically active sites.

17.
Langmuir ; 36(5): 1174-1182, 2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-31957455

RESUMEN

Phase engineering has been recognized as a promising method for boosting the catalytic activity of molybdenum sulfide (MoS2) in the field of electrocatalysts and photocatalysts. The metallic 1T-MoS2 exhibits much higher catalytic activity than natural semiconducting 2H-MoS2 but suffers from harsh synthetic conditions and metastable physical/chemical properties. The hybrid 1T/2H phase MoS2 shows higher catalytic activity than the 2H-MoS2 and exhibits better stability than the 1T-MoS2, which is more favorable than the 2H-MoS2 in the photocatalytic reactions. In this study, we report a hydrothermal synthesis of the hybrid 1T/2H-MoS2 phase coupled with SiC as a heterojunction photocatalyst for 4-nitrophenol (4-NP) degradation. SiC acts as a counterpart of the heterojunction structure and a morphology modifier, which dramatically promotes the reaction rate and visible light responsibility, providing new candidates and strategies in photocatalysis.

18.
Nanoscale ; 12(3): 1779-1789, 2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-31895367

RESUMEN

The effect of the morphology, which exposes different crystal planes, on the physicochemical properties and catalytic activity in diesel carbon soot oxidation was studied using CoOx-decorated CeO2 (CoCeO2) heterostructured catalysts, such as nanorods (NRs), nanocubes (NCs), and nanoparticles (NPs). The CoOx/CeO2 nanorods (CoCeO2-NR) showed superior carbon soot combustion activity at lower temperatures to CoCeO2-NCs and CoCeO2-NPs under both tight and loose contact modes with soot combustion temperatures (T50) of 321 and 494 °C, respectively. A comprehensive analysis by means of X-ray diffraction, Raman spectroscopy, high-angle annular dark-field scanning transmission electron microscopy, in situ X-ray absorption fine structure, temperature-programmed reduction, oxygen storage/release measurements, and density functional theory calculations revealed that the improved activity of CoCeO2-NRs is mainly ascribed to the high oxygen release rate and strong redox capability of the supported Co species, with complete reversibility. This originates from the high reactivity of oxygen atoms on (110) surfaces, compared to (100) and (111) surfaces over CeO2. Additionally, CoCeO2-NRs displayed durability and recyclability without any significant loss of catalytic activity or structural change. These insights will aid in the rational design of practical catalysts for the purification of diesel exhaust and other important transformations.

19.
Chem Sci ; 11(16): 4194-4203, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34122882

RESUMEN

This work demonstrated the use of TiO2 as a promising platform for the synthesis of non-equilibrium RhCu binary alloy nanoparticles (NPs). These metals are regarded as immiscible based on their phase diagram but form NPs with the aid of the significant hydrogen spillover on TiO2 with concurrent proton-electron transfer. The resulting RhCu/TiO2 exhibited 2.6 times higher catalytic activity than Rh/TiO2 during hydrogen production from the hydrolysis of ammonia borane (AB), due to a synergistic effect. Theoretical simulations showed a higher energy value for the adsorption of AB on the RhCu alloy and a lower activation energy for the rate determining N-B bond dissociation by the attack of H2O during AB hydrolysis compared to monometallic Rh. High-angle annular dark-field scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy confirmed the formation of RhCu alloy NPs with a mean diameter of 2.0 nm on the TiO2. H2-temperature programmed reduction and in situ X-ray absorption fine structure analyses at elevated temperature under H2 demonstrated that Rh3+ and Cu2+ precursors were simultaneously reduced only on the TiO2 support. This effect resulted from the improved and limited reducibility of Cu2+ and Rh3+, respectively. The rate of hydrogen spillover of TiO2 is faster as compared to γ-Al2O3 and MgO as evidenced by sequential H2/D2 exchanges during in situ Fourier transform infrared analyses. Density functional theory calculations also showed that the migration of H atoms on TiO2 proceeds with a lower energy barrier than that on Al2O3, and the reduction of Cu2+ species is facilitated by H spillover on the support rather than by direct reduction by H2. These results confirm the vital role of TiO2 in the formation of the alloy and may represent a new strategy for the synthesis of different non-equilibrium solid solution alloys.

20.
Chem Rec ; 20(7): 660-671, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31833628

RESUMEN

Nanoporous silica solids can offer opportunities for hosting photocatalytic components such as various tetra-coordinated transition metal ions to form systems referred to as "single-site photocatalysts". Under UV/visible-light irradiation, they form charge transfer excited states, which exhibit a localized charge separation and thus behave differently from those of bulk semiconductor photocatalysts exemplified by TiO2 . This account presents an overview of the design of advanced functional materials based on the unique photo-excited mechanisms of single-site photocatalysts. Firstly, the incorporation of single-site photocatalysts within transparent porous silica films will be introduced, which exhibit not only unique photocatalytic properties, but also high surface hydrophilicity with self-cleaning and antifogging applications. Secondary, photo-assisted deposition (PAD) of metal precursors on single-site photocatalysts opens up a new route to prepare nanoparticles. Thirdly, visible light sensitive photocatalysts with single and/or binary oxides moieties can be prepared so as to use solar light, the ideal energy source.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...