Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36835322

RESUMEN

Human InsR, IGF1R, and IRR receptor tyrosine kinases (RTK) of the insulin receptor subfamily play an important role in signaling pathways for a wide range of physiological processes and are directly associated with many pathologies, including neurodegenerative diseases. The disulfide-linked dimeric structure of these receptors is unique among RTKs. Sharing high sequence and structure homology, the receptors differ dramatically in their localization, expression, and functions. In this work, using high-resolution NMR spectroscopy supported by atomistic computer modeling, conformational variability of the transmembrane domains and their interactions with surrounding lipids were found to differ significantly between representatives of the subfamily. Therefore, we suggest that the heterogeneous and highly dynamic membrane environment should be taken into account in the observed diversity of the structural/dynamic organization and mechanisms of activation of InsR, IGF1R, and IRR receptors. This membrane-mediated control of receptor signaling offers an attractive prospect for the development of new targeted therapies for diseases associated with dysfunction of insulin subfamily receptors.


Asunto(s)
Desarrollo de Medicamentos , Receptor de Insulina , Humanos , Dominios Proteicos , Receptor de Insulina/química , Receptor de Insulina/fisiología , Transducción de Señal
2.
Int J Mol Sci ; 22(2)2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33435517

RESUMEN

GPR55 is a GPCR of the non-CB1/CB2 cannabinoid receptor family, which is activated by lysophosphatidylinositol (LPI) and stimulates the proliferation of cancer cells. Anandamide, a bioactive lipid endocannabinoid, acts as a biased agonist of GPR55 and induces cancer cell death, but is unstable and psychoactive. We hypothesized that other endocannabinoids and structurally similar compounds, which are more hydrolytically stable, could also induce cancer cell death via GPR55 activation. We chemically synthesized and tested a set of fatty acid amides and esters for cell death induction via GPR55 activation. The most active compounds appeared to be N-acyl dopamines, especially N-docosahexaenoyl dopamine (DHA-DA). Using a panel of cancer cell lines and a set of receptor and intracellular signal transduction machinery inhibitors together with cell viability, Ca2+, NO, ROS (reactive oxygen species) and gene expression measurement, we showed for the first time that for these compounds, the mechanism of cell death induction differed from that published for anandamide and included neuronal nitric oxide synthase (nNOS) overstimulation with concomitant oxidative stress induction. The combination of DHA-DA with LPI, which normally stimulates cancer proliferation and is increased in cancer setting, had an increased cytotoxicity for the cancer cells indicating a therapeutic potential.


Asunto(s)
Antineoplásicos/farmacología , Agonistas de Receptores de Cannabinoides/farmacología , Dopamina/análogos & derivados , Activadores de Enzimas/farmacología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Receptores de Cannabinoides/metabolismo , Animales , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Agonistas de Receptores de Cannabinoides/química , Línea Celular Tumoral , Dopamina/química , Dopamina/farmacología , Activadores de Enzimas/química , Ácidos Grasos/química , Ácidos Grasos/farmacología , Humanos , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Células PC12 , Ratas
3.
Biochim Biophys Acta Biomembr ; 1862(11): 183417, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32710851

RESUMEN

Despite the biological significance of insulin signaling, the molecular mechanisms of activation of the insulin receptor (IR) and other proteins from its family remain elusive. Current hypothesis on signal transduction suggests ligand-triggered structural changes in the extracellular domain followed by transmembrane (TM) domains closure and dimerization leading to trans-autophosphorylation and kinase activity in intracellular segments of the receptor. Using NMR spectroscopy, we detected dimerization of isolated TM segments of IR in different membrane-mimicking environments and observed multiple signals of NH groups of protein backbone possibly corresponding to several dimer conformations. Taking available experimental data as constraints, several atomistic models of dimeric TM domains of IR and insulin-like growth factor 1 (IGF-1R) receptors were elaborated. Molecular dynamics simulations of IR ectodomain revealed noticeable collective movements potentially responsible for closure of the C-termini of FnIII-3 domains and spatial approaching of TM helices upon insulin-induced receptor activation. In addition, we demonstrated that the intracellular part of the receptor does not impose restrictions on the positioning of TM helices in the membrane. Finally, we used two independent structure prediction methods to generate a series of dimer conformations followed by their cluster analysis and dimerization free energy estimation to select the best dimer models. Biological relevance of the later was further tested via comparison of the hydrophobic organization of TM helices for both wild-type receptors and their mutants. Based on these data, the ability of several segments from other proteins to functionally replace IR and/or IGF-1R TM domains was explained.


Asunto(s)
Simulación de Dinámica Molecular , Multimerización de Proteína , Receptor IGF Tipo 1/química , Receptor de Insulina/química , Humanos , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos
4.
Front Cell Dev Biol ; 8: 611121, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33392200

RESUMEN

Sialidases, or neuraminidases, are involved in several human disorders such as neurodegenerative, infectious and cardiovascular diseases, and cancers. Accumulative data have shown that inhibition of neuraminidases, such as NEU1 sialidase, may be a promising pharmacological target, and selective inhibitors of NEU1 are therefore needed to better understand the biological functions of this sialidase. In the present study, we designed interfering peptides (IntPep) that target a transmembrane dimerization interface previously identified in human NEU1 that controls its membrane dimerization and sialidase activity. Two complementary strategies were used to deliver the IntPep into cells, either flanked to a TAT sequence or non-tagged for solubilization in detergent micelles. Combined with molecular dynamics simulations and heteronuclear nuclear magnetic resonance (NMR) studies in membrane-mimicking environments, our results show that these IntPep are able to interact with the dimerization interface of human NEU1, to disrupt membrane NEU1 dimerization and to strongly decrease its sialidase activity at the plasma membrane. In conclusion, we report here new selective inhibitors of human NEU1 of strong interest to elucidate the biological functions of this sialidase.

5.
Biochim Biophys Acta Gen Subj ; 1863(1): 82-95, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30253204

RESUMEN

Single-point mutations in the transmembrane (TM) region of receptor tyrosine kinases (RTKs) can lead to abnormal ligand-independent activation. We use a combination of computational modeling, NMR spectroscopy and cell experiments to analyze in detail the mechanism of how TM domains contribute to the activation of wild-type (WT) PDGFRA and its oncogenic V536E mutant. Using a computational framework, we scan all positions in PDGFRA TM helix for identification of potential functional mutations for the WT and the mutant and reveal the relationship between the receptor activity and TM dimerization via different interfaces. This strategy also allows us design a novel activating mutation in the WT (I537D) and a compensatory mutation in the V536E background eliminating its constitutive activity (S541G). We show both computationally and experimentally that single-point mutations in the TM region reshape the TM dimer ensemble and delineate the structural and dynamic determinants of spontaneous activation of PDGFRA via its TM domain. Our atomistic picture of the coupling between TM dimerization and PDGFRA activation corroborates the data obtained for other RTKs and provides a foundation for developing novel modulators of the pathological activity of PDGFRA.


Asunto(s)
Mutación Puntual , Dominios Proteicos , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/química , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Sitio Alostérico , Biología Computacional , Simulación por Computador , Humanos , Ligandos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Mutagénesis , Fosfatidilcolinas/química , Multimerización de Proteína
6.
Biochim Biophys Acta Biomembr ; 1859(4): 561-576, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27884807

RESUMEN

Interaction between transmembrane helices often determines biological activity of membrane proteins. Bitopic proteins, a broad subclass of membrane proteins, form dimers containing two membrane-spanning helices. Some aspects of their structure-function relationship cannot be fully understood without considering the protein-lipid interaction, which can determine the protein conformational ensemble. Experimental and computer modeling data concerning transmembrane parts of bitopic proteins are reviewed in the present paper. They highlight the importance of lipid-protein interactions and resolve certain paradoxes in the behavior of such proteins. Besides, some properties of membrane organization provided a clue to understanding of allosteric interactions between distant parts of proteins. Interactions of these kinds appear to underlie a signaling mechanism, which could be widely employed in the functioning of many membrane proteins. Treatment of membrane proteins as parts of integrated fine-tuned proteolipid system promises new insights into biological function mechanisms and approaches to drug design. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.


Asunto(s)
Membrana Dobles de Lípidos/química , Lípidos de la Membrana/química , Proteínas de la Membrana/química , Transducción de Señal , Regulación Alostérica , Secuencia de Aminoácidos , Interacciones Hidrofóbicas e Hidrofílicas , Membrana Dobles de Lípidos/metabolismo , Lípidos de la Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Conformación Proteica en Hélice alfa , Pliegue de Proteína , Multimerización de Proteína , Electricidad Estática , Termodinámica
7.
Sci Rep ; 6: 38363, 2016 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-27917893

RESUMEN

Neuraminidase 1 (NEU1) is a lysosomal sialidase catalyzing the removal of terminal sialic acids from sialyloconjugates. A plasma membrane-bound NEU1 modulating a plethora of receptors by desialylation, has been consistently documented from the last ten years. Despite a growing interest of the scientific community to NEU1, its membrane organization is not understood and current structural and biochemical data cannot account for such membrane localization. By combining molecular biology and biochemical analyses with structural biophysics and computational approaches, we identified here two regions in human NEU1 - segments 139-159 (TM1) and 316-333 (TM2) - as potential transmembrane (TM) domains. In membrane mimicking environments, the corresponding peptides form stable α-helices and TM2 is suited for self-association. This was confirmed with full-size NEU1 by co-immunoprecipitations from membrane preparations and split-ubiquitin yeast two hybrids. The TM2 region was shown to be critical for dimerization since introduction of point mutations within TM2 leads to disruption of NEU1 dimerization and decrease of sialidase activity in membrane. In conclusion, these results bring new insights in the molecular organization of membrane-bound NEU1 and demonstrate, for the first time, the presence of two potential TM domains that may anchor NEU1 in the membrane, control its dimerization and sialidase activity.


Asunto(s)
Membrana Celular/química , Neuraminidasa/química , Fosfatidilcolinas/química , Ácidos Siálicos/química , Ubiquitina/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células COS , Membrana Celular/enzimología , Sistema Libre de Células/química , Sistema Libre de Células/metabolismo , Chlorocebus aethiops , Escherichia coli/química , Expresión Génica , Humanos , Modelos Moleculares , Neuraminidasa/genética , Neuraminidasa/metabolismo , Fosfatidilcolinas/metabolismo , Plásmidos/química , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ácidos Siálicos/metabolismo , Homología Estructural de Proteína , Especificidad por Sustrato , Ubiquitina/genética , Ubiquitina/metabolismo
8.
J Chem Theory Comput ; 11(9): 4415-26, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26575933

RESUMEN

The cell membrane is "stuffed" with proteins, whose transmembrane (TM) helical domains spontaneously associate to form functionally active complexes. For a number of membrane receptors, a modulation of TM domains' oligomerization has been shown to contribute to the development of severe pathological states, thus calling for detailed studies of the atomistic aspects of the process. Despite considerable progress achieved so far, several crucial questions still remain: How do the helices recognize each other in the membrane? What is the driving force of their association? Here, we assess the dimerization free energy of TM helices along with a careful consideration of the interplay between the structure and dynamics of protein and lipids using atomistic molecular dynamics simulations in the hydrated lipid bilayer for three different model systems - TM fragments of glycophorin A, polyalanine and polyleucine peptides. We observe that the membrane driven association of TM helices exhibits a prominent entropic character, which depends on the peptide sequence. Thus, a single TM peptide of a given composition induces strong and characteristic perturbations in the hydrophobic core of the bilayer, which may facilitate the initial "communication" between TM helices even at the distances of 20-30 Å. Upon tight helix-helix association, the immobilized lipids accommodate near the peripheral surfaces of the dimer, thus disturbing the packing of the surrounding. The dimerization free energy of the modeled peptides corresponds to the strength of their interactions with lipids inside the membrane being the lowest for glycophorin A and similarly higher for both homopolymers. We propose that the ability to accommodate lipid tails determines the dimerization strength of TM peptides and that the lipid matrix directly governs their association.


Asunto(s)
Glicoforinas/química , Membrana Dobles de Lípidos/química , Lípidos/química , Péptidos/química , Simulación de Dinámica Molecular , Unión Proteica , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...