Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(19)2023 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-37833945

RESUMEN

Biofilms as a form of adaptation are beneficial for bacterial survival and may be hot spots for horizontal gene transfer, including conjugation. The aim of this research was to characterize the biofilm biomass, viable cell ratios and conjugative transfer of the pOX38 plasmid, an F-plasmid derivative, from the Escherichia coli N4i pOX38 strain (donor) into a uropathogenic E. coli DL82 strain (recipient) within dual-species biofilms with one of the following opportunistic pathogenic bacteria: Klebsiella pneumoniae, Enterococcus faecalis or Pseudomonas aeruginosa. Dual-species biofilms of E. coli with K. pneumoniae or P. aeruginosa but not E. faecalis were more massive and possessed more exopolysaccharide matrix compared to single-species biofilms of donor and recipient cells. Correlation between biofilm biomass and exopolysaccharide matrix was rs = 0.888 in dual-species biofilms. In dual-species biofilm with E. faecalis the proportion of E. coli was the highest, while in the biofilm with P. aeruginosa and K. pneumoniae, the E. coli was less abundant. The conjugative frequencies of plasmid transfer in dual-species biofilms of E. coli with E. faecalis and P. aeruginosa were reduced. A decrease in conjugative frequency was also observed when cell-free supernatants (CFSs) of E. faecalis and P. aeruginosa were added to the E. coli conjugation mixture. Further, the activity of the autoinducer AI-2 in the CFSs of the E. coli conjugation mixture was reduced when bacteria or CFSs of E. faecalis and P. aeruginosa were added to the E. coli conjugation mixture. Hence, the intercellular and interspecies interactions in dual-species biofilms depend on the partners involved.


Asunto(s)
Biopelículas , Escherichia coli , Escherichia coli/genética , Biomasa , Plásmidos/genética , Comunicación Celular
2.
Int J Mol Sci ; 24(16)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37628817

RESUMEN

Commensal bacteriocin-producing Escherichia coli are of interest for possible use as probiotics to selectively control the spread of pathogenic bacteria. Here, we evaluated the biosafety and efficacy of two new bacteriocin-producing E. coli strains, Q5 (VKM B-3706D) and C41 (VKM B-3707D), isolated from healthy farm animals. The genomes of both strains were sequenced, and genes responsible for the antagonistic and colonization abilities of each strain were identified. In vitro studies have shown that both strains were medium-adhesive and demonstrated antagonistic activity against most enteropathogens tested. Oral administration of 5 × 108 to 5 × 1010 colony-forming units of both strains to rats with drinking water did not cause any disease symptoms or side effects. Short-term (5 days) oral administration of both strains protected rats from colonization and pathogenic effects of a toxigenic beta-lactam-resistant strain of E. coli C55 and helped preserve intestinal homeostasis. Taken together, these in silico, in vitro, and in vivo data indicate that both strains (and especially E. coli Q5) can be potentially used for the prevention of colibacillosis in farm animals.


Asunto(s)
Bacteriocinas , Infecciones por Escherichia coli , Probióticos , Animales , Ratas , Escherichia coli , Administración Oral , Infecciones por Escherichia coli/prevención & control , Animales Domésticos , Bacteriocinas/farmacología , Probióticos/farmacología
3.
Microorganisms ; 10(8)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-36013976

RESUMEN

Due to the spread of antibiotic-resistant bacteria, new alternatives to antibiotics and ways to prevent infections are being sought. Bacteriocin-producing bacteria are therefore attracting attention due to their probiotic potential as a safe alternative to antimicrobial drugs. The aim of this work was to determine the prevalence of bacteriocin-encoded genes among Escherichia coli strains from healthy farm animals and to characterize the presence of virulence-associated genes, the possibility of prophage induction, and hemolytic and bacterial antagonistic activity of the bacteriocin-producing E. coli in order to reveal their potential for application. It was found that 17 of 72 E. coli strains (23.6%) produced bacteriocins. Among them, 18 out of 30 bacteriocin genes were detected: the most prevalent genes were those for microcin M (58.8%), colicin E1 (52.9%), and colicin M (35.3%). Colicin Ia (29.4%), colicin E9, colicin Ib, colicin B (23.5%), and colicin E9 (17.7%) genes were also frequent, while the prevalence of genes encoding microcins V, B17, and H47 and colicins E3, K, N, U, Y, 5, and 10 did not exceed 11.8%. At least two different bacteriocin genes were detected in all 17 bacteriocinogenic strains; the highest number of different bacteriocin genes detected in one strain was seven genes. E. coli strains with combinations of colicin E1 and E or microcin M and colicin E1 genes were more prevalent than others (17.7%). Among the 17 bacteriocin-producing E. coli strains, 5.9% were hemolytic, 47.1% contained prophages, and 58.8% carried genes encoding toxins. Cell-free supernatants of bacteriocin-producing strains were shown to inhibit the growth of pathogenic E. coli strains belonging to the APEC, STEC, and ETEC pathotypes. Thus, among the studied bacteriocin-producing E. coli isolated from the gastrointestinal tract of farm animals, three strains with high antagonistic bacterial activity and the absence of pathogenicity genes, prophages, and hemolytic activity were identified and therefore have potential for application.

4.
Infect Genet Evol ; 97: 105160, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34839025

RESUMEN

Conjugation is recognized as a mechanism driving dissemination of antibacterial resistances and virulence factors among bacteria. In the presented work conjugative transfer frequency into clinical uropathogenic Escherichia coli strains (UPEC) isolated from patients with symptomatic urinary tract infections was investigated. From 93 obtained UPEC strains only 29 were suitable for conjugation experiments with the plasmid pOX38, a well-known F-plasmid derivative. The study was focused on comparison of conjugation frequencies in plankton and biofilm, including comparison of conjugation frequencies in high and low biofilm biomass with their virulence potential. It was shown that the conjugation frequency depended on the biofilm biomass and was significantly higher in thin (OD580 < 0.3) than in thick biofilm (OD580 ≥ 0.3). Nonmetric multidimensional scaling analysis revealed that higher conjugation frequencies in plankton and biofilm were directly positively correlated with the sum of virulence-associated genes of the recipient strain and presence of multidrug antibiotic resistances. On the other hand, the sum of insensitivities to different bacteriocins was negatively correlated with an increase in the conjugative transfer level. Our results obtained hence indicate that the evolution of potentially more pathogenic strains via conjugation is depended on the strains' ability to be a "good" recipient in the conjugative transfer, possibly due to the ability to form thinner biofilms.


Asunto(s)
Biopelículas , Infecciones por Escherichia coli/microbiología , Plancton , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/patogenicidad , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Plancton/efectos de los fármacos , Escherichia coli Uropatógena/efectos de los fármacos , Factores de Virulencia/genética
5.
Microorganisms ; 8(5)2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32429211

RESUMEN

Escherichia coli strains isolated from case of colibacillosis in Russian poultry farms in the region of Perm Krai were analyzed for their sensitivity to main antibiotics and bacteriocins. Sensitivity profiles for 9 antibiotics and 20 bacteriocins were determined with the disc diffusion method and the overlay test, respectively. Further, with the PCR the presence of several bla and integron 1 genes was revealed and the phylogenetic group for each strain determined. Among the 28 studied E. coli strains 85.7% were resistant to at least three antibiotics, 53.6% to five or more drugs, and 10.7% to eight antibiotics. PCR revealed that the blaTEM gene was harbored by 71.4% of strains and the blaCTX-M gene by 53.6% of strains. The class 1 integrons were found in 28.6% of strains. All of the studied strains were insensitive to ten or more bacteriocins. More than 90% of the studied strains were insensitive to pore-forming colicins of group A and B colicins, while 60.7% were insensitive to colicins with DNase and RNase activity. All of the analyzed strains were insensitive to at least two of the tested microcins. Neither the antibiotic resistance profile nor the bacteriocin resistance profile correlated with phylogenetic group of the strains. Thus, the studied strains were shown to possess high levels of multiple resistance to antibiotics and insensitivity to bacteriocins.

6.
Pathog Dis ; 75(8)2017 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-28961860

RESUMEN

Pseudomonas aeruginosa (PA) responsible for acute and chronic infections often forms a well-organized bacterial population with different microbial species including commensal strains of Escherichia coli. Bacterial extracellular components of mixed culture can modulate the influence of bacteria on the neutrophil functions. The objective of this study was to compare the effect of pyocyanin, pyoverdine, LPS, exopolysaccharide of single species and mixed culture supernatants of PA strains and E. coli K12 on microbicidal, secretory activity of human neutrophils in vitro. Bacterial components of E. coli K12 in mixed supernatants with 'biofilm' PA strains (PA ATCC, PA BALG) enhanced short-term microbicidal mechanisms and inhibited neutrophil secretion delayed in time. The influence of 'planktonic' PA (PA 9-3) exometabolites in mixed culture is almost mimicked by E. coli K12 effect on functional neutrophil changes. This investigation may help to understand some of the mechanisms of neutrophil response to mixed infections of different PA with other bacteria species.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Escherichia coli/fisiología , Neutrófilos/fisiología , Pseudomonas aeruginosa/fisiología , Técnicas Bacteriológicas , Homoserina/análogos & derivados , Humanos , Lactonas , Lipopolisacáridos , Mediciones Luminiscentes , Oligopéptidos , Peroxidasa/metabolismo , Piocianina , Especies Reactivas de Oxígeno
7.
Plasmid ; 82: 28-34, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26436830

RESUMEN

As multidrug resistant bacteria pose one of the greatest risks to human health new alternative antibacterial agents are urgently needed. One possible mechanism that can be used as an alternative to traditional antibiotic therapy is transfer of killing agents via conjugation. Our work was aimed at providing a proof of principle that conjugation-based antimicrobial systems are possible. We constructed a bacterial conjugation-based "kill"-"anti-kill" antimicrobial system employing the well known Escherichia coli probiotic strain Nissle 1917 genetically modified to harbor a conjugative plasmid carrying the "kill" gene (colicin ColE7 activity gene) and a chromosomally encoded "anti-kill" gene (ColE7 immunity gene). The constructed strain acts as a donor in conjugal transfer and its efficiency was tested in several types of conjugal assays. Our results clearly demonstrate that conjugation-based antimicrobial systems can be highly efficient.


Asunto(s)
Antibacterianos/metabolismo , Colicinas/genética , Conjugación Genética/genética , Escherichia coli/genética , Plásmidos/genética , Infecciones Bacterianas/terapia , ADN Bacteriano/genética , Farmacorresistencia Bacteriana Múltiple , Humanos
8.
Can J Microbiol ; 59(9): 604-10, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24011343

RESUMEN

Pseudomonas aeruginosa and Escherichia coli are known to be involved in mixed communities in diverse niches. In this study we examined the influence of the predominant form of cell existence of and the exometabolite production by P. aeruginosa strains on interspecies interactions, in vitro. Bacterial numbers of P. aeruginosa and E. coli in mixed plankton cultures and biofilms compared with their numbers in single plankton cultures and biofilms changed in a different way, but were in accordance with the form of P. aeruginosa cell existence. The mass of a mixed-species biofilm was greater than the mass of a single-species biofilm. Among the mixed biofilms, the one with the "planktonic" P. aeruginosa strain had the least biomass. The total pyocyanin and pyoverdin levels were found to be lower in all mixed plankton cultures. Despite this, clinical P. aeruginosa strains irrespective of the predominant form of existence ("biofilm" or "planktonic") had a higher total concentration of exometabolites than did the reference strain in 12-24 h mixed cultures. The metabolism of E. coli, according to its bioluminescence, was reduced in mixed cultures, and the decrease was by 20- to 100-fold greater with the clinical Pseudomonas strains than the reference Pseudomonas strain. Thus, both the predominant form of existence of and the exometabolite production by distinct P. aeruginosa strains should be considered to fully understand the interspecies relationship and bacteria survival in natural communities.


Asunto(s)
Biopelículas , Escherichia coli/fisiología , Plancton , Pseudomonas aeruginosa/fisiología , Técnicas de Cocultivo , Ecosistema , Escherichia coli/crecimiento & desarrollo , Humanos , Interacciones Microbianas , Oligopéptidos/metabolismo , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/crecimiento & desarrollo , Piocianina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...