Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(12)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201293

RESUMEN

The study of the L- and D-amino acid properties in proteins and peptides has attracted considerable attention in recent years, as the replacement of even one L-amino acid by its D-analogue due to aging of the body is resulted in a number of pathological conditions, including Alzheimer's and Parkinson's diseases. A recent trend is using short model systems to study the peculiarities of proteins with D-amino acids. In this report, the comparison of the excited states quenching of L- and D-tryptophan (Trp) in a model donor-acceptor dyad with (R)- and (S)-ketoprofen (KP-Trp) was carried out by photochemically induced dynamic nuclear polarization (CIDNP) and fluorescence spectroscopy. Quenching of the Trp excited states, which occurs via two mechanisms: prevailing resonance energy transfer (RET) and electron transfer (ET), indeed demonstrates some peculiarities for all three studied configurations of the dyad: (R,S)-, (S,R)-, and (S,S)-. Thus, the ET efficiency is identical for (S,R)- and (R,S)-enantiomers, while RET differs by 1.6 times. For (S,S)-, the CIDNP coefficient is almost an order of magnitude greater than for (R,S)- and (S,R)-. To understand the source of this difference, hyperpolarization of (S,S)-and (R,S)- has been calculated using theory involving the electron dipole-dipole interaction in the secular equation.


Asunto(s)
Transferencia de Energía , Cetoprofeno/química , Fotoquímica , Triptófano/química , Estructura Molecular , Estereoisomerismo
2.
Int J Mol Sci ; 21(15)2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32731624

RESUMEN

Photoinduced elementary processes in chiral linked systems, consisting of drugs and tryptophan (Trp) residues, attract considerable attention due to several aspects. First of all, these are models that allow one to trace the full and partial charge transfer underlying the binding of drugs to enzymes and receptors. On the other hand, Trp fluorescence is widely used to establish the structure and conformational mobility of proteins due to its high sensitivity to the microenvironment. Therefore, the study of mechanisms of Trp fluorescence quenching in various systems has both fundamental and practical interest. An analysis of the photo-chemically induced dynamic nuclear polarization (CIDNP) and Trp fluorescence quenching in (R/S)-ketoprofen-(S)-tryptophan ((S/R)-KP-(S)-Trp) dyad carried out in this work allowed us to trace the intramolecular reversible electron transfer (ET) and obtain evidence in favor of the resonance energy transfer (RET). The fraction of dyad's singlet excited state, quenched via ET, was shown to be 7.5 times greater for the (S,S)-diastereomer than for the (R,S) analog. At the same time, the ratio of the fluorescence quantum yields shows that quenching effectiveness of (S,S)-diastereomer to be 5.4 times lower than for the (R,S) analog. It means that the main mechanism of Trp fluorescence quenching in (S/R)-KP-(S)-Trp dyad is RET.


Asunto(s)
Electrones , Transferencia de Energía , Cetoprofeno/química , Modelos Químicos , Triptófano/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA