Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 935: 173322, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38777072

RESUMEN

The swift proliferation of forests converted into monoculture plantations has profound impacts on soil nutrients, microbial communities, and many ecological processes and functions. Nematodes are soil microfauna that play a pivotal role in biogeochemical cycling and in soil food web, whereas the response of soil nematode communities and energy flows to forest conversion remains unknown. Here, we assessed the community composition and the energy flows of the nematode food webs as a function of soil chemistry after conversion from natural forests (Forest) to four plantations (8-year-old): Amygdalus persica (Peach), Myrica rubra (Berry), Camellia oleifera (Oil), and Cunninghamia lanceolata (Fir). After forest conversion, soil organic carbon (SOC) and total nitrogen (TN) contents decreased by 65 % and 55 %, respectively. Forest conversion strongly reduced the abundance (particularly large-bodied omnivorous-predatory nematodes), diversity, maturity, and stability of the soil nematode community. The shifts in composition and structure of nematode communities after forest conversion are reflected in changes in the abundance of predominant genera and trophic taxa, especially bacterivorous, fungivorous, and omnivorous-predatory nematodes. Acrobeloides notably increased, whereas Plectus, Prismatolaimus, Tylencholaimus, and Tripyla decreased. Accordingly, the abundances of r-strategy nematodes (cp value = 1-2) increased, but that of the K-strategists (cp value = 3-5) declined. Additionally, the energy flow across the soil nematode food web was reduced by 36 % and flow uniformity declined by 24 % after forest conversion. These changes in nematode diversity and abundance were triggered by diminishing soil C and N contents, thereby affecting the energy flows via the nematode food webs. Thus, forest conversion affects soil biotas and multi-functions from the perspective of nematode food web structure and energy flows, and underlines the interconnections between ecosystem and energy dynamics across multi-trophic levels, which is crucial for sustainable forest management.

2.
Environ Sci Technol ; 58(19): 8464-8479, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38701232

RESUMEN

Microplastics threaten soil ecosystems, strongly influencing carbon (C) and nitrogen (N) contents. Interactions between microplastic properties and climatic and edaphic factors are poorly understood. We conducted a meta-analysis to assess the interactive effects of microplastic properties (type, shape, size, and content), native soil properties (texture, pH, and dissolved organic carbon (DOC)) and climatic factors (precipitation and temperature) on C and N contents in soil. We found that low-density polyethylene reduced total nitrogen (TN) content, whereas biodegradable polylactic acid led to a decrease in soil organic carbon (SOC). Microplastic fragments especially depleted TN, reducing aggregate stability, increasing N-mineralization and leaching, and consequently increasing the soil C/N ratio. Microplastic size affected outcomes; those <200 µm reduced both TN and SOC contents. Mineralization-induced nutrient losses were greatest at microplastic contents between 1 and 2.5% of soil weight. Sandy soils suffered the highest microplastic contamination-induced nutrient depletion. Alkaline soils showed the greatest SOC depletion, suggesting high SOC degradability. In low-DOC soils, microplastic contamination caused 2-fold greater TN depletion than in soils with high DOC. Sites with high precipitation and temperature had greatest decrease in TN and SOC contents. In conclusion, there are complex interactions determining microplastic impacts on soil health. Microplastic contamination always risks soil C and N depletion, but the severity depends on microplastic characteristics, native soil properties, and climatic conditions, with potential exacerbation by greenhouse emission-induced climate change.


Asunto(s)
Carbono , Clima , Microplásticos , Nitrógeno , Suelo , Nitrógeno/análisis , Suelo/química , Carbono/análisis , Contaminantes del Suelo/análisis
3.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38691428

RESUMEN

Elucidating complex interactions between bacteria and fungi that determine microbial community structure, composition, and functions in soil, as well as regulate carbon (C) and nutrient fluxes, is crucial to understand biogeochemical cycles. Among the various interactions, competition for resources is the main factor determining the adaptation and niche differentiation between these two big microbial groups in soil. This is because C and energy limitations for microbial growth are a rule rather than an exception. Here, we review the C and energy demands of bacteria and fungi-the two major kingdoms in soil-the mechanisms of their competition for these and other resources, leading to niche differentiation, and the global change impacts on this competition. The normalized microbial utilization preference showed that bacteria are 1.4-5 times more efficient in the uptake of simple organic compounds as substrates, whereas fungi are 1.1-4.1 times more effective in utilizing complex compounds. Accordingly, bacteria strongly outcompete fungi for simple substrates, while fungi take advantage of complex compounds. Bacteria also compete with fungi for the products released during the degradation of complex substrates. Based on these specifics, we differentiated spatial, temporal, and chemical niches for these two groups in soil. The competition will increase under the main five global changes including elevated CO2, N deposition, soil acidification, global warming, and drought. Elevated CO2, N deposition, and warming increase bacterial dominance, whereas soil acidification and drought increase fungal competitiveness.


Asunto(s)
Bacterias , Hongos , Microbiología del Suelo , Hongos/metabolismo , Hongos/crecimiento & desarrollo , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Suelo/química , Carbono/metabolismo , Interacciones Microbianas
4.
Glob Chang Biol ; 30(5): e17311, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38742695

RESUMEN

The soil microbial carbon pump (MCP) is increasingly acknowledged as being directly linked to soil organic carbon (SOC) accumulation and stability. Given the close coupling of carbon (C) and nitrogen (N) cycles and the constraints imposed by their stoichiometry on microbial growth, N addition might affect microbial growth strategies with potential consequences for necromass formation and carbon stability. However, this topic remains largely unexplored. Based on two multi-level N fertilizer experiments over 10 years in two soils with contrasting soil fertility located in the North (Cambisol, carbon-poor) and Southwest (Luvisol, carbon-rich), we hypothesized that different resource demands of microorganism elicit a trade-off in microbial growth potential (Y-strategy) and resource-acquisition (A-strategy) in response to N addition, and consequently on necromass formation and soil carbon stability. We combined measurements of necromass metrics (MCP efficacy) and soil carbon stability (chemical composition and mineral associated organic carbon) with potential changes in microbial life history strategies (assessed via soil metagenomes and enzymatic activity analyses). The contribution of microbial necromass to SOC decreased with N addition in the Cambisol, but increased in the Luvisol. Soil microbial life strategies displayed two distinct responses in two soils after N amendment: shift toward A-strategy (Cambisol) or Y-strategy (Luvisol). These divergent responses are owing to the stoichiometric imbalance between microbial demands and resource availability for C and N, which presented very distinct patterns in the two soils. The partial correlation analysis further confirmed that high N addition aggravated stoichiometric carbon demand, shifting the microbial community strategy toward resource-acquisition which reduced carbon stability in Cambisol. In contrast, the microbial Y-strategy had the positive direct effect on MCP efficacy in Luvisol, which greatly enhanced carbon stability. Such findings provide mechanistic insights into the stoichiometric regulation of MCP efficacy, and how this is mediated by site-specific trade-offs in microbial life strategies, which contribute to improving our comprehension of soil microbial C sequestration and potential optimization of agricultural N management.


Asunto(s)
Carbono , Fertilizantes , Nitrógeno , Microbiología del Suelo , Suelo , Suelo/química , Carbono/metabolismo , Carbono/análisis , Nitrógeno/metabolismo , Nitrógeno/análisis , Fertilizantes/análisis , Ciclo del Carbono , Microbiota
5.
Nat Commun ; 15(1): 3578, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678028

RESUMEN

Delineation of microbial habitats within the soil matrix and characterization of their environments and metabolic processes are crucial to understand soil functioning, yet their experimental identification remains persistently limited. We combined single- and triple-energy X-ray computed microtomography with pore specific allocation of 13C labeled glucose and subsequent stable isotope probing to demonstrate how long-term disparities in vegetation history modify spatial distribution patterns of soil pore and particulate organic matter drivers of microbial habitats, and to probe bacterial communities populating such habitats. Here we show striking differences between large (30-150 µm Ø) and small (4-10 µm Ø) soil pores in (i) microbial diversity, composition, and life-strategies, (ii) responses to added substrate, (iii) metabolic pathways, and (iv) the processing and fate of labile C. We propose a microbial habitat classification concept based on biogeochemical mechanisms and localization of soil processes and also suggests interventions to mitigate the environmental consequences of agricultural management.


Asunto(s)
Bacterias , Ecosistema , Microbiota , Microbiología del Suelo , Suelo , Suelo/química , Microbiota/fisiología , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Microtomografía por Rayos X , Isótopos de Carbono/metabolismo , Porosidad , Carbono/metabolismo , Biodiversidad , Glucosa/metabolismo
6.
Sci Total Environ ; 928: 172265, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38621534

RESUMEN

Extensive unforested sandy areas on the margins of floodplains and riverbeds, formed by dunes, barchans, and accumulation berms, are a ubiquitous feature across northern Eurasia and Alaska. These dynamic landscapes, which bear witness to the complex Holocene and modern climatic fluctuations, provide a unique opportunity to study ecosystem evolution. Within this heterogeneous assemblage, active dunes, characterized by their very sparse plant communities, contrast sharply with the surrounding taiga (boreal) forests common for the stabilized dunes. This juxtaposition makes these regions to natural laboratories to study vegetation succession and soil development. Through a comprehensive analysis of climate, geomorphology, vegetation, soil properties, and microbiome composition, we elucidate the intricacies of cyclic and linear ecosystem evolution within a representative sandy area located along the lower Nadym River in Siberia, approximately 100 km south of the Arctic Circle. The shift in the Holocene wind regime and the slow development of vegetation under harsh climatic conditions promoted cyclical ecosystem dynamics that precluded the attainment of a steady state. This cyclical trajectory is exemplified by Arenosols, characterized by extremely sparse vegetation and undifferentiated horizons. Conversely, accelerated vegetation growth within wind-protected enclaves on marginally stabilized soils facilitated sand stabilization and subsequent pedogenesis towards Podzols. Based on soil acidification due to litter input (mainly needles, lichens, and mosses) and the succession of microbial communities, we investigated constraints on carbon and nutrient availability during the initial stages of pedogenesis. In summary, the comprehensive study of initial ecosystem development on sand dunes within taiga forests has facilitated the elucidation of both common phases and spatiotemporal dynamics of vegetation and soil succession. This analysis has further clarified the existence of both cyclic and linear trajectories within the successional processes of ecosystem evolution.


Asunto(s)
Ecosistema , Suelo , Taiga , Siberia , Suelo/química , Arena , Monitoreo del Ambiente , Microbiota , Microbiología del Suelo
7.
Sci Total Environ ; 931: 172789, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38688368

RESUMEN

Organic and mineral fertilization increase crop productivity, but their combined effects on soil quality index (SQI) and ecosystem multifunctionality (EMF, defined as the capacity of soils to simultaneously provide multiple functions and services) are not clear. We conducted a 13-year field trial in North China Plain to examine how five maize-derived organic fertilizers (straw, manure, compost, biogas residue, and biochar) at equal C input rate (3.2 t C ha-1), with or without nitrogen (N) fertilization influenced topsoil (0-15 cm) physico-chemical properties, activities of enzymes responsible for carbon (C), N, and phosphorus (P) cycling, as well as SQI and soil EMF. Organic fertilizers with or without N increased SQI by 51-187 % and EMF by 31-351 % through the enhancement of soil physical (mean weight diameter of soil aggregates) and chemical properties (C, N, and P contents) as well as C, N, and P acquisition enzyme activities, albeit the biochar effects were of minor importance. N application increased EMF compared to soil without N. Soil quality increased with EMF. Random forest analysis revealed that microbial biomass C and N, available P, permanganate oxidizable C, dissolved organic C and N, mean weight diameter of aggregates, hot water extractable C, and electrical conductivity were the main contributions to soil EMF. We conclude that application of maize-derived organic fertilizers, especially compost and straw, with optimal N fertilization is a plausible strategy to increase SQI and EMF under a wheat/maize system.


Asunto(s)
Ecosistema , Fertilizantes , Nitrógeno , Suelo , Suelo/química , Nitrógeno/análisis , China , Agricultura/métodos , Fósforo/análisis , Zea mays , Carbono/análisis
8.
Glob Chang Biol ; 30(4): e17281, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619550

RESUMEN

The ongoing climate change on the Tibetan Plateau, leading to warming and precipitation anomalies, modifies phosphorus (P) cycling in alpine meadow soils. However, the interactions and cascading effects of warming and precipitation changes on the key "extracellular" and "intracellular" P cycling genes (PCGs) of bacteria are largely unknown for these P-limited ecosystems. We used metagenomics to analyze the individual and combined effects of warming and altered precipitation on soil PCGs and P transformation in a manipulation experiment. Warming and increased precipitation raised Olsen-P (bioavailable P, AP) by 13% and 20%, respectively, mainly caused by augmented hydrolysis of organic P compounds (NaOH-Po). The decreased precipitation reduced soil AP by 5.3%. The richness and abundance of the PCGs' community in soils on the cold Tibetan plateau were more sensitive to warming than altered precipitation. The abundance of PCGs and P cycling processes decreased under the influence of individual climate change factors (i.e., warming and altered precipitation alone), except for the warming combined with increased precipitation. Pyruvate metabolism, phosphotransferase system, oxidative phosphorylation, and purine metabolism (all "intracellular" PCG) were closely correlated with P pools under climate change conditions. Specifically, warming recruited bacteria with the phoD and phoX genes, which encode enzymes responsible for phosphoester hydrolysis (extracellular P cycling), strongly accelerated organic P mineralization and so, directly impacted P bioavailability in alpine soil. The interactions between warming and altered precipitation profoundly influenced the PCGs' community and facilitated microbial adaptation to these environmental changes. Warming combined with increased precipitation compensated for the detrimental impacts of the individual climate change factors on PCGs. In conclusion, warming combined with rising precipitation has boosting effect on most P-related functions, leading to the acceleration of P cycling within microbial cells and extracellularly, including mineralization and more available P release for microorganisms and plants in alpine soils.


Asunto(s)
Ecosistema , Suelo , Humanos , Disponibilidad Biológica , Cambio Climático , Fósforo
9.
Glob Chang Biol ; 30(4): e17277, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38634544

RESUMEN

More than half of the world's population is nourished by crops fertilized with synthetic nitrogen (N) fertilizers. However, N fertilization is a major source of anthropogenic emissions, augmenting the carbon footprint (CF). To date, no global quantification of the CF induced by N fertilization of the main grain crops has been performed, and quantifications at the national scale have neglected the CO2 assimilated by plants. A first cradle-to-grave life cycle assessment was performed to quantify the CF of the N fertilizers' production, transportation, and application to the field and the uses of the produced biomass in livestock feed and human food, as well as biofuel production. We quantified the direct and indirect inventories emitted or sequestered by N fertilization of main grain crops: wheat, maize, and rice. Grain food produced with N fertilization had a net CF of 7.4 Gt CO2eq. in 2019 after excluding the assimilated C in plant biomass, which accounted for a quarter of the total CF. The cradle (fertilizer production and transportation), gate (fertilizer application, and soil and plant systems), and grave (feed, food, biofuel, and losses) stages contributed to the CF by 2%, 11%, and 87%, respectively. Although Asia was the top grain producer, North America contributed 38% of the CF due to the greatest CF of the grave stage (2.5 Gt CO2eq.). The CF of grain crops will increase to 21.2 Gt CO2eq. in 2100, driven by the rise in N fertilization to meet the growing food demand without actions to stop the decline in N use efficiency. To meet the targets of climate change, we introduced an ambitious mitigation strategy, including the improvement of N agronomic efficiency (6% average target for the three crops) and manufacturing technology, reducing food losses, and global conversion to healthy diets, whereby the CF can be reduced to 5.6 Gt CO2eq. in 2100.


Asunto(s)
Huella de Carbono , Nitrógeno , Humanos , Fertilizantes/análisis , Biocombustibles , Agricultura , Suelo , Productos Agrícolas , Grano Comestible/química , China , Carbono/análisis
10.
Proc Natl Acad Sci U S A ; 121(16): e2318160121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38598339

RESUMEN

Organic carbon availability in soil is crucial for shaping microbial communities, yet, uncertainties persist concerning microbial adaptations to carbon levels and the ensuing ecological and evolutionary consequences. We investigated organic carbon metabolism, antibiotic resistance, and virus-host interactions in soils subjected to 40 y of chemical and organic fertilization that led to contrasting carbon availability: carbon-poor and carbon-rich soils, respectively. Carbon-poor soils drove the enrichment of putative genes involved in organic matter decomposition and exhibited specialization in utilizing complex organic compounds, reflecting scramble competition. This specialization confers a competitive advantage of microbial communities in carbon-poor soils but reduces their buffering capacity in terms of organic carbon metabolisms, making them more vulnerable to environmental fluctuations. Additionally, in carbon-poor soils, viral auxiliary metabolic genes linked to organic carbon metabolism increased host competitiveness and environmental adaptability through a strategy akin to "piggyback the winner." Furthermore, putative antibiotic resistance genes, particularly in low-abundance drug categories, were enriched in carbon-poor soils as an evolutionary consequence of chemical warfare (i.e., interference competition). This raises concerns about the potential dissemination of antibiotic resistance from conventional agriculture that relies on chemical-only fertilization. Consequently, carbon starvation resulting from long-term chemical-only fertilization increases microbial adaptations to competition, underscoring the importance of implementing sustainable agricultural practices to mitigate the emergence and spread of antimicrobial resistance and to increase soil carbon storage.


Asunto(s)
Carbono , Suelo , Suelo/química , Carbono/metabolismo , Agricultura/métodos , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Microbiología del Suelo
11.
Geoderma ; 443: 116831, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38533356

RESUMEN

Soils are a major player in the global carbon (C) cycle and climate change by functioning as a sink or a source of atmospheric carbon dioxide (CO2). The largest terrestrial C reservoir in soils comprises two main pools: organic (SOC) and inorganic C (SIC), each having distinct fates and functions but with a large disparity in global research attention. This study quantified global soil C research trends and the proportional focus on SOC and SIC pools based on a bibliometric analysis and raise the importance of SIC pools fully underrepresented in research, applications, and modeling. Studies on soil C pools started in 1905 and has produced over 47,000 publications (>1.7 million citations). Although the global C stocks down to 2 m depth are nearly the same for SOC and SIC, the research has dominantly examined SOC (>96 % of publications and citations) with a minimal share on SIC (<4%). Approximately 40 % of the soil C research was related to climate change. Despite poor coverage and publications, the climate change-related research impact (citations per document) of SIC studies was higher than that of SOC. Mineral associated organic carbon, machine learning, soil health, and biochar were the recent top trend topics for SOC research (2020-2023), whereas digital soil mapping, soil properties, soil acidification, and calcite were recent top trend topics for SIC. SOC research was contributed by 151 countries compared to 88 for SIC. As assessed by publications, soil C research was mainly concentrated in a few countries, with only 9 countries accounting for 70 % of the research. China and the USA were the major producers (45 %), collaborators (37 %), and funders of soil C research. SIC is a long-lived soil C pool with a turnover rate (leaching and recrystallization) of more than 1000 years in natural ecosystems, but intensive agricultural practices have accelerated SIC losses, making SIC an important player in global C cycle and climate change. The lack of attention and investment towards SIC research could jeopardize the ongoing efforts to mitigate climate change impacts to meet the 1.5-2.0 °C targets under the Paris Climate Agreement of 2015. This bibliographic study calls to expand the research focus on SIC and including SIC fluxes in C budgets and models, without which the representation of the global C cycle is incomplete.

12.
Sci Total Environ ; 924: 171631, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38467254

RESUMEN

Soil acidification is an ongoing problem in intensively cultivated croplands due to inefficient and excessive nitrogen (N) fertilization. We collected high-resolution data comprising 19,969 topsoil (0-20 cm) samples from the Land Use and Coverage Area frame Survey (LUCAS) of the European commission in 2009 to assess the impact of N fertilization on buffering substances such as carbonates and base cations. We have only considered the impacts of mineral fertilizers from the total added N, and a N use efficiency of 60 %. Nitrogen fertilization adds annually 6.1 × 107 kmol H+ to European croplands, leading to annual loss of 6.1 × 109 kg CaCO3. Assuming similar acidification during the next 50 years, soil carbonates will be completely removed from 3.4 × 106 ha of European croplands. In carbonate-free soils, annual loss of 2.1 × 107 kmol of basic cations will lead to strong acidification of at least 2.6 million ha of European croplands within the next 50 years. Inorganic carbon and basic cation losses at such rapid scale tremendously drop the nutrient status and production potential of croplands. Soil liming to ameliorate acidity increases pH only temporarily and with additional financial and environmental costs. Only the direct loss of soil carbonate stocks and compensation of carbonate-related CO2 correspond to about 1.5 % of the proposed budget of the European commission for 2023. Thus, controlling and decreasing soil acidification is crucial to avoid degradation of agricultural soils, which can be done by adopting best management practices and increasing nutrient use efficiency. Regular screening or monitoring of carbonate and base cations contents, especially for soils, where the carbonate stocks are at critical levels, are urgently necessary.

13.
Sci Total Environ ; 926: 172082, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38554958

RESUMEN

Two main challenges which human society faces for sustainable development goals are the maintenance of food security and mitigation of greenhouse gas (GHG) emissions. Here, we examined the impacts of six fertilization treatments including unfertilized control (CK), mineral nitrogen (N, 90 kg N ha-1), mineral N plus 30 kg P ha-1 phosphorus (NP), NP combined with 3.75 Mg ha-1 straw (NP + Str), farmyard manure (Man, 75 Mg ha-1), and NP combined with manure (NP + Man) on crop productivity and carbon emissions (soil GHG emission; GHGI, yield-based GHG intensity; NGHGB, net GHG balance; carbon footprint, CF) in a maize-wheat cropping system during two years (April 2018-June 2020) in a semi-arid continental climate after 40 years of fertilization in the Northwest China. Manure and straw increased total GHG by 38-60 % compared to the mineral fertilizers alone, which was mainly due to the 49-80 % higher direct emissions of carbon dioxide (CO2) rather than nitrous oxide (N2O). Compared to the N fertilizer alone, organic amendments and NP increased cumulative energy yield by 134-202 % but decreased GHGI by 38-55 %, indicating that organic fertilizers increased crop productivity at the cost of higher GHG emissions. When the soil organic carbon changes (ΔSOC) were accounted for in the C emission balance, manure application acted as a net C sink due to the NGHGB recorded with -123 kg CO2-eq ha-1 year-1. When producing the same yield and economic benefits, the manure and straw addition decreased the CF by 59-85 % compared to N fertilization alone. Overall, the transition from mineral to organic fertilization in the semi-arid regions is a two-way independent solution to increase agricultural productivity along with the reduction of C emissions.


Asunto(s)
Gases de Efecto Invernadero , Suelo , Humanos , Huella de Carbono , Zea mays , Triticum , Fertilizantes , Estiércol , Dióxido de Carbono/análisis , Carbono , Agricultura , Minerales , China , Óxido Nitroso/análisis , Fertilización
14.
J Environ Manage ; 356: 120574, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38520862

RESUMEN

The resource quantity and elemental stoichiometry play pivotal roles in shaping belowground biodiversity. However, a significant knowledge gap remains regarding the influence of different plant communities established through monoculture plantations on soil fungi and bacteria's taxonomic and functional dynamics. This study aimed to elucidate the mechanisms underlying the regulation and adaptation of microbial communities at the taxonomic and functional levels in response to communities formed over 34 years through monoculture plantations of coniferous species (Japanese larch, Armand pine, and Chinese pine), deciduous forest species (Katsura), and natural shrubland species (Asian hazel and Liaotung oak) in the temperate climate. The taxonomic and functional classifications of fungi and bacteria were examined for the mineral topsoil (0-10 cm) using MiSeq-sequencing and annotation tools of microorganisms (FAPROTAX and Funguild). Soil bacterial (6.52 ± 0.15) and fungal (4.46 ± 0.12) OTUs' diversity and richness (5.83*103±100 and 1.12*103±46.4, respectively) were higher in the Katsura plantation compared to Armand pine and Chinese pine. This difference was attributed to low soil DOC/OP (24) and DON/OP (11) ratios in the Katsura, indicating that phosphorus availability increased microbial community diversity. The Chinese pine plantation exhibited low functional diversity (3.34 ± 0.04) and richness (45.2 ± 0.41) in bacterial and fungal communities (diversity 3.16 ± 0.15 and richness 56.8 ± 3.13), which could be attributed to the high C/N ratio (25) of litter. These findings suggested that ecological stoichiometry, such as of enzyme, litter C/N, soil DOC/DOP, and DON/DOP ratios, was a sign of the decoupling of soil microorganisms at the genetic and functional levels to land restoration by plantations. It was found that the stoichiometric ratios of plant biomass served as indicators of microbial functions, whereas the stoichiometric ratios of available nutrients in soil regulated microbial genetic diversity. Therefore, nutrient stoichiometry could serve as a strong predictor of microbial diversity and composition during forest restoration.


Asunto(s)
Pinus , Microbiología del Suelo , Bosques , Biodiversidad , Suelo , Bacterias/genética , Nutrientes
15.
Proc Natl Acad Sci U S A ; 121(13): e2318475121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38466879

RESUMEN

Deforestation poses a global threat to biodiversity and its capacity to deliver ecosystem services. Yet, the impacts of deforestation on soil biodiversity and its associated ecosystem services remain virtually unknown. We generated a global dataset including 696 paired-site observations to investigate how native forest conversion to other land uses affects soil properties, biodiversity, and functions associated with the delivery of multiple ecosystem services. The conversion of native forests to plantations, grasslands, and croplands resulted in higher bacterial diversity and more homogeneous fungal communities dominated by pathogens and with a lower abundance of symbionts. Such conversions also resulted in significant reductions in carbon storage, nutrient cycling, and soil functional rates related to organic matter decomposition. Responses of the microbial community to deforestation, including bacterial and fungal diversity and fungal guilds, were predominantly regulated by changes in soil pH and total phosphorus. Moreover, we found that soil fungal diversity and functioning in warmer and wetter native forests is especially vulnerable to deforestation. Our work highlights that the loss of native forests to managed ecosystems poses a major global threat to the biodiversity and functioning of soils and their capacity to deliver ecosystem services.


Asunto(s)
Ecosistema , Microbiota , Suelo/química , Conservación de los Recursos Naturales , Biodiversidad , Bosques , Bacterias , Microbiología del Suelo
16.
mBio ; 15(3): e0017724, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38376207

RESUMEN

Microbial carbon use efficiency (CUE) is a critical parameter that controls carbon storage in soil, but many uncertainties remain concerning adaptations of microbial communities to long-term fertilization that impact CUE. Based on H218O quantitative stable isotope probing coupled with metagenomic sequencing, we disentangled the roles of active microbial population dynamics and life strategies for CUE in soils after a long-term (35 years) mineral or organic fertilization. We found that the soils rich in organic matter supported high microbial CUE, indicating a more efficient microbial biomass formation and a greater carbon sequestration potential. Organic fertilizers supported active microbial communities characterized by high diversity and a relative increase in net growth rate, as well as an anabolic-biased carbon cycling, which likely explains the observed enhanced CUE. Overall, these results highlight the role of population dynamics and life strategies in understanding and predicting microbial CUE and sequestration in soil.IMPORTANCEMicrobial CUE is a major determinant of global soil organic carbon storage. Understanding the microbial processes underlying CUE can help to maintain soil sustainable productivity and mitigate climate change. Our findings indicated that active microbial communities, adapted to long-term organic fertilization, exhibited a relative increase in net growth rate and a preference for anabolic carbon cycling when compared to those subjected to chemical fertilization. These shifts in population dynamics and life strategies led the active microbes to allocate more carbon to biomass production rather than cellular respiration. Consequently, the more fertile soils may harbor a greater microbially mediated carbon sequestration potential. This finding is of great importance for manipulating microorganisms to increase soil C sequestration.


Asunto(s)
Carbono , Microbiota , Carbono/química , Suelo/química , Microbiología del Suelo , Cambio Climático
17.
Sci Total Environ ; 918: 170738, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38325444

RESUMEN

Microbial acquisition and utilization of organic and mineral phosphorus (P) sources in paddy soils are strongly dependent on redox environment and remain the key to understand P turnover and allocation for cell compound synthesis. Using double 32/33P labeling, we traced the P from three sources in a P-limited paddy soil: ferric iron-bound phosphate (Fe-P), wheat straw P (Straw-P), and soil P (Soil-P) in microbial biomass P (MBP) and phospholipids (Phospholipid-P) of individual microbial groups depending on water regimes: (i) continuous flooding or (ii) alternate wetting and drying. 32/33P labeling combined with phospholipid fatty acid analysis allowed to trace P utilization by functional microbial groups. Microbial P nutrition was mainly covered by Soil-P, whereas microorganisms preferred to take up P from mineralized Straw-P than from Fe-P dissolution. The main Straw-P mobilizing agents were Actinobacteria under alternating wetting and drying and other Gram-positive bacteria under continuous flooding. Actinobacteria and arbuscular mycorrhiza increased P incorporation into cell membranes by 1.4-5.8 times under alternate wetting and drying compared to continuous flooding. The Fe-P contribution to MBP was 4-5 times larger in bulk than in rooted soil because (i) rice roots outcompeted microorganisms for P uptake from Fe-P and (ii) rhizodeposits stimulated microbial activity, e.g. phosphomonoesterase production and Straw-P mineralization. Higher phosphomonoesterase activities during slow soil drying compensated for the decreased reductive dissolution of Fe-P. Concluding, microbial P acquisition strategies depend on (i) Soil-P, especially organic P, availability, (ii) the activity of phosphomonoesterases produced by microorganisms and roots, and (iii) P sources - all of which depend on the redox conditions. Maximizing legacy P utilization in the soil as a function of the water regime is one potential way to reduce competition between roots and microbes for P in rice cultivation.


Asunto(s)
Oryza , Contaminantes del Suelo , Oryza/metabolismo , Fósforo/análisis , Agua/análisis , Suelo , Fosfolípidos , Hierro/análisis , Bacterias/metabolismo , Monoéster Fosfórico Hidrolasas , Contaminantes del Suelo/análisis
18.
Glob Chang Biol ; 30(2): e17184, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38375609

RESUMEN

Energy is the driver of all microbial processes in soil. The changes in Gibbs energy are equal to the enthalpy changes during all processes in soil because these processes are ongoing under constant pressure and volume-without work generation. The enthalpy change by transformation of individual organic compounds or of complex organic matter in soil can be exactly quantified by the nominal oxidation state of carbon changes. Consequently, microbial energy use efficiency can be assessed by the complete combustion enthalpy of organic compounds when microorganisms use O2 as the terminal electron acceptor for microbial processes under aerobic conditions.


Asunto(s)
Compuestos Orgánicos , Suelo , Oxidación-Reducción , Termodinámica , Microbiología del Suelo , Carbono
19.
Environ Int ; 185: 108508, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38377723

RESUMEN

Microplastics (MPs), including conventional hard-to-biodegrade petroleum-based and faster biodegradable plant-based ones, impact soil structure and microbiota in turn affecting the biodiversity and functions of terrestrial ecosystems. Herein, we investigated the effects of conventional and biodegradable MPs on aggregate distribution and microbial community composition in microhabitats at the aggregate scale. Two MP types (polyethylene (PE) and polylactic acid (PLA) with increasing size (50, 150, and 300 µm)) were mixed with a silty loam soil (0-20 cm) at a ratio of 0.5 % (w/w) in a rice-wheat rotation system in a greenhouse under 25 °C for one year. The effects on aggregation, bacterial communities and their co-occurrence networks were investigated as a function of MP aggregate size. Conventional and biodegradable MPs generally had similar effects on soil aggregation and bacterial communities. They increased the proportion of microaggregates from 17 % to 32 %, while reducing the macroaggregates from 84 % to 68 %. The aggregate stability decreased from 1.4 mm to 1.0-1.1 mm independently of MP size due to the decline in the binding agents gluing soil particles (e.g., microbial byproducts and proteinaceous substances). MP type and amount strongly affected the bacterial community structure, accounting for 54 % of the variance. Due to less bioavailable organics, bacterial community composition within microaggregates was more sensitive to MPs addition compared to macroaggregates. Co-occurrence network analysis revealed that MPs exacerbated competition among bacteria and increased the complexity of bacterial networks. Such effects were stronger for PE than PLA MPs due to the higher persistence of PE in soils. Proteobacteria, Bacteroidetes, Chloroflexi, Actinobacteria, and Gemmatimonadetes were the keystone taxa in macroaggregates, while Actinobacteria and Chloroflexi were the keystone taxa in microaggregates. Proteobacteria, Actinobacteria, and Chloroflexi were the most sensitive bacteria to MPs addition. Overall, both conventional and biodegradable MPs reduced the portion of large and stable aggregates, altering bacterial community structures and keystone taxa, and consequently, the functions.


Asunto(s)
Chloroflexi , Microbiota , Microplásticos , Plásticos , Suelo/química , Microbiología del Suelo , Poliésteres , Bacterias , Polietileno
20.
Glob Chang Biol ; 30(1): e17092, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273481

RESUMEN

Mineral-associated soil organic matter (MAOM) is the largest, slowest cycling pool of carbon (C) in the terrestrial biosphere. MAOM is primarily derived from plant and microbial sources, yet the relative contributions of these two sources to MAOM remain unresolved. Resolving this issue is essential for managing and modeling soil carbon responses to environmental change. Microbial biomarkers, particularly amino sugars, are the primary method used to estimate microbial versus plant contributions to MAOM, despite systematic biases associated with these estimates. There is a clear need for independent lines of evidence to help determine the relative importance of plant versus microbial contributions to MAOM. Here, we synthesized 288 datasets of C/N ratios for MAOM, particulate organic matter (POM), and microbial biomass across the soils of forests, grasslands, and croplands. Microbial biomass is the source of microbial residues that form MAOM, whereas the POM pool is the direct precursor of plant residues that form MAOM. We then used a stoichiometric approach-based on two-pool, isotope-mixing models-to estimate the proportional contribution of plant residue (POM) versus microbial sources to the MAOM pool. Depending on the assumptions underlying our approach, microbial inputs accounted for between 34% and 47% of the MAOM pool, whereas plant residues contributed 53%-66%. Our results therefore challenge the existing hypothesis that microbial contributions are the dominant constituents of MAOM. We conclude that biogeochemical theory and models should account for multiple pathways of MAOM formation, and that multiple independent lines of evidence are required to resolve where and when plant versus microbial contributions are dominant in MAOM formation.


Asunto(s)
Minerales , Suelo , Suelo/química , Bosques , Carbono , Biomasa , Plantas , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...