Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxicol Rep ; 12: 404-413, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38590342

RESUMEN

The disposal of polymer post-treatment sludge (PTS) from Barekese Water Treatment Plants (WTPs) as organic fertilizer and aquatic feed is a common practice in Ghana, necessitating a thorough evaluation of its ecological and human health risks. This study aims to assess the suitability of PTS samples for soil amendment and fish feed, scrutinizing potential hazards to consumer health and soil. PTS samples were collected from five distinct lateral sections of three clariflocculator tanks. Potentially toxic metals such as Cd, Zn, Pb, Cu, Ni, and Cr were determined using a flame atomic absorption spectrophotometer. The mean concentration of 7.82 ± 2.43, 0.31 ± 0.021, and 0.78 ± 0.042 mg/kg for Mn, Zn, and Pb respectively. The concentrations of Ni, Cr, and Cd were below their detection limits (BDL) in all PTS samples. Upon detailed exposure assessment, ingestion emerged as the primary exposure route for both adults and children, with non-cancer risks (NCR) determined to be below 1 for both age groups. Additionally, an exploration of potential cancer risks (CR) associated with heavy metal exposure in the PTS samples revealed values below the tolerable intake levels ranging from 10-4 to 10-6 for both adults and children (10-8 and 10-9, respectively). This study also employs various ecological indices, such as Nemerow's synthetic pollution index (PN), single factor pollution index (PI), geo-accumulation index (Igeo), contamination factor (CF), potential ecological risk index (PERI), pollution load index (PLI), polymetallic contaminant index (IPD), and ecological risk index (ERI). These indices consistently highlight a low contamination status and ecological sensitivity. Consequently, the study indicates that the presence of metals in the PTS samples does not pose a significant threat to the surrounding environment and human health. Furthermore, this research underscores the inadequacy of relying solely on regulatory limit values in assessing the health risks of waste materials. Such comprehensive assessments are crucial for safeguarding aquatic and human populations.

2.
Heliyon ; 10(6): e27554, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38524565

RESUMEN

Access to potable water is a significant concern due to the increasing global threat posed by fluoride contamination in groundwater sources. This study investigated the concentrations of fluoride (F-), the suitability of groundwater for human consumption, the physicochemical characteristics affecting the water quality, and non-carcinogenic adverse health risks to both children and adults in the Bongo district in Northern Ghana. The findings revealed that the groundwater had a mean pH, salinity, TDS, conductivity, and turbidity below the WHO guideline values with a mean fluoride concentration of 1.76 mg/L above the guideline limit of 1.5 mg/L. The study also found that there was no strong relationship between fluoride and the measured water parameters, which may be attributed to poor control of distribution, transport mechanisms, and sources. The WQI scores ranged from 42.62% to 70.72%, indicating that all borehole water samples were of good and excellent quality. The average chronic daily intake showed that children are often more exposed to the harmful impact of fluoride than adults. The average HQ > 1 indicates the probability of dental and skeletal fluorosis after continuous exposure over time in adults and children. The study recommends taking immediate action to mitigate high groundwater fluoride concentrations, implementing appropriate water management strategies, and raising public awareness of the health risks. These measures can guide future groundwater management practices and help policymakers address contamination and protect local communities.

3.
Chemphyschem ; 25(8): e202300947, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38335116

RESUMEN

The bandgap of most known two-dimensional materials can be tuned by hydrogenation, although certain 2D materials lack a sufficient wide bandgap. Currently, it would be perfect to design non-toxic, low-cost, and high-performance photocatalysts for photocatalytic water splitting via hydrogenation. We systematically examine the impact of hydrogenation on the optical and electronic characteristics of GeC/g-C3N4 vdW heterostructures (vdWHs) with four different stacking patterns using first-principles calculations. The phonon spectra, interlayer distance, binding energies and ab initio molecular dynamics calculations show the kinetic, mechanical, and thermal stability of GeC/g-C3N4 vdWH after hydrogenation at 300, 500 and 800 K and possesses anisotropic Poisson's ratio, Young's and bulk modulus, suggesting that it's a promising candidate for experimental fabrication. According to an investigation of its electronic properties, GeC/g-C3N4 vdWH has a bandgap of 1.28 eV, but hydrogenation dramatically increases it to 2.47 eV. As a result of interface-induced electronic doping, the electronic states in g-C3N4 might be significantly adjusted by coming into contact with hydrogenated GeC sheets. The vdWH exhibits a type-II semiconductor, which can enhance the spatial separation of electron-hole pairs and has a strong red-shift of absorption coefficient than those of the constituent monolayers. The high potential drop caused by the significant valence and conduction band offsets effectively separated the charge carriers. The absorption coefficient of GeCH2/g-C3N4 vdWH is highly influenced by a biaxial compressive strain more than the biaxial tensile strain. Our theoretical research implies that the hydrogenated GeCH2/g-C3N4 vdWH possesses tunable optical and electronic behaviour for use as a hole-transport material in solar energy harvesting, nanoelectronic and optoelectronic devices.

4.
Heliyon ; 6(12): e05829, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33426336

RESUMEN

Vegetables cultivated in soil irrigated with untreated groundwater and municipal-waste-dominated (MWD) stream can elevate the concentration of heavy metals (Cd, Fe, Zn, Hg, Cr, and Ni) in edible parts of the crop, affecting food safety and public health worldwide. This study assessed the quality, sources, and distribution of heavy metals in surface soils, MWD stream and groundwater, and edible tissues of leafy and non-leafy vegetables from a major urban farm in the Sekondi-Takoradi metropolis, Ghana. Human health risk due to exposure to the metals in frequently consumed vegetables were investigated. Indigenous leafy vegetables (Corchorus olitorious and Amaranthus spinosus), exotic leafy vegetables (Lactuca sativa, Brassica oleracea, and Brassica rapa), and non-leafy vegetables (Capsicum annum, Raphanus sativus, Daucus carota, and Allium cepa) were collected from the urban farm. The mean concentration of Cd, Hg, and Fe ranged from 0.008 - 0.027, 0.001-0.013, and 4.517-36.178 mg/kg fw in edible parts of non-leafy vegetables, respectively and 0.011-0.035, 0.002-0.011, and 3.617-13.695 mg/kg fw in exotic or indigenous leafy vegetables. The vegetables were less impacted with the metals if compared to similar vegetables produced from other urban farms, locally and in some countries in Africa, Asia, and Europe. Water resource on the farm were not suitable for vegetable crop irrigation since mean concentration of E. coli (200 cfu/mL), Hg (0.009 mg/L), and Cd (0.019 mg/L) in the MWD stream and 80 % of the groundwater sources exceeded the safe limits recommended by the Food and Agriculture Organization. Geo-accumulation index for each metal in soil was ≤0, however, enrichment factor indicated a high anthropic enriched soil for Cr and Ni. Principal component analysis-multiple linear regression of the metals in soil identified mixed household waste/fertilizer, fertilizer, and crustal material as main sources for the heavy metal load in soil for which geogenic sources accounted for 74.3 %. Preferentially, Cd and Hg accumulated in Amaranthus spinosus, Daucus carota, and Corchorus olitorious. The estimated daily intake of each metal in the vegetables were below local and international daily dietary intake levels. At the 95th percentile concentration of each metal, target hazard quotient and the hazard index was <1 for adult male or female who consume the vegetables. Finally, appropriate agri-horticultural practices must be enforced to mitigate Cd, Ni, Cr, and Hg accumulation in the soil-vegetable system since the metals have profound adverse effect on human health.

5.
Food Sci Biotechnol ; 28(2): 569-579, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30956870

RESUMEN

Health risk assessment and heavy metal accumulation were evaluated in the muscles of widely consumed Trachurus trachurus, Lutjanus fulgens, Lutjanus goreensis, Acanthocybium solandri, Pagellus bellottii, Scomber colias and Dentex congoensis fish species in Asafo, Ghana. The fish samples were prepared using a wet digestion method and the heavy metals analysis was performed with the flame atomic absorption spectrophotometer (UNICAM 969). The results revealed that Mn, Cu, Zn, Cd, and Pb concentrations were below the permissible values set by several health institutions. The health risk assessment based on non-carcinogenic and cancer factors effect indicates no adverse health effect of fish intake. The results of heavy metal concentrations showed that different varieties of fish could be safe for human intake and the results are anticipated to create alertness among the local people.

6.
J Health Pollut ; 9(21): 190306, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30931166

RESUMEN

BACKGROUND: Mercury (Hg) is a heavy metal that can cause several adverse health effects based on its form (organic, inorganic or elemental), duration and pathway of exposure. Measurement of mercury present in human biological media is often used to assess human exposure to mercury at mining sites. OBJECTIVES: The aim of the present study was to measure the concentrations of total mercury in urine, hair, and fingernails of miners and inhabitants of Amansie West District, Ghana. METHODS: Concentrations of total mercury were measured in sixty-eight miners and twelve non-miners in the study area using cold vapor atomic absorption spectrophotometry with an automatic mercury analyzer (HG 5000). RESULTS: Total mercury in nails and hair of smelter miners was 3.32 ± 0.36 and 6.59 ± 0.01 µg/g, respectively. Total mercury concentrations in hair samples obtained from smelter miners were above the 1 µg/g guideline set by the United States Environmental Protection Agency (USEPA). Moreover, the total mercury concentration in urine samples was 6.97 ± 0.06 µg/L, far below the >25 µg/L level considered to be a high level of mercury contamination. The total mercury accrued by the individuals was not dependent on age, but was positively associated with duration of stay. CONCLUSIONS: Based on the total mercury (THg) levels analyzed in the biological media, artisanal gold mining activities in Amansie West District are on the increase with a potential risk of developing chronic effects. However, the majority of the population, particularly those engaged in artisanal small-scale gold mining, are unmindful of the hazards posed by the use of mercury in mining operations. The results showed that THg in urine, hair, and fingernails more efficiently distinguished mercury exposure in people close to mining and Hg pollution sources than in people living far from the mining sites. Further education on cleaner artisanal gold mining processes could help to minimize the impact of mercury use and exposure on human health and the environment. PARTICIPANT CONSENT: Obtained. ETHICS APPROVAL: This study was approved by the Ghana Environmental Protection Agency and the Ministry of Local Government and Rural Development in Manso Nkwanta. COMPETING INTERESTS: The authors declare no competing financial interests.

7.
Sci Total Environ ; 633: 630-640, 2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-29597160

RESUMEN

The existence of pesticides, such as organochlorine pesticides, parathion-ethyl, methamidophos which is banned globally and some current-use non-banned pesticides of organophosphorus and synthetic pyrethroids in freshwater sources is an ecological and public health concern in many countries, including Ghana. Prompted by this concern, the exposure levels and risk assessment of these pesticides to humans and non-target organisms via groundwater and surface water sources in an agricultural catchment dominated by cocoa crops in the Ankobra Basin, Ghana, were investigated. The individual concentrations of the banned pesticides in the surface water and groundwater samples varied from < LOD to 0.110 µg/L and < LOD to 0.055 µg/L, respectively, while the concentrations of the non-banned pesticides ranged from < LOD to 0.925 µg/L and < LOD to 2 µg/L, respectively. The mean concentrations of chlorpyrifos, cypermethrin, p,p'-DDT and pirimiphos-methyl in some water sources exceeded the EU limit of 0.1 µg/L. Some surface water sources were more contaminated with DDTs, endrin, dieldrin, methoxychlor, chlorpyrifos, and HCH isomers than were freshwater sources in river basins in some countries of the world. Chlorpyrifos, p,p'-DDT and methoxychlor were ubiquitous in both water sources. The hydrochemical and compositional profiles of the pesticides indicate that water-exchange and secondary porosities in the bedrock likely contributed to the occurrence of the pesticides in the water sources. The pesticides were of low risk to humans that consume the water, but considering the US EPA safe limit for carcinogenic effects of 10-6, the high levels of DDTs, ß-HCH, and dieldrin in some of the surface water and groundwater sources may cause cancer in children or infants. The toxicity of pesticide mixtures to surface water non-target organisms decreased in the order of fish > Daphnia magna > algae. The pesticides in the water sources were anthropogenic in origin and recently used. DDT and HCH in the water were of technical-grade origin.


Asunto(s)
Agua Subterránea/química , Plaguicidas/análisis , Contaminantes Químicos del Agua/análisis , Contaminación Química del Agua/estadística & datos numéricos , Agricultura , Cacao , Productos Agrícolas , Exposición Dietética/estadística & datos numéricos , Sedimentos Geológicos , Ghana , Humanos , Hidrocarburos Clorados/análisis , Residuos de Plaguicidas/análisis , Medición de Riesgo , Ríos/química , Abastecimiento de Agua
8.
Bull Environ Contam Toxicol ; 97(5): 677-683, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27660189

RESUMEN

Three analytical methods using automatic mercury analyzer (AMA), direct mercury analyzer (DMA) and inductively coupled plasma-mass spectrometry (ICP-MS) were applied to determine mercury in fish and sediment samples from the Volta Lake in Ghana with the aim of comparing their accuracy, precision, and limit of quantifications. There was statistically no significant difference (p < 0.05) between the concentrations recorded by the methods. This indicates their suitability for the accurate determination of mercury. Limit of quantification was found to be in the order; ICP-MS (0.053 ng/g) < DMA (0.527 ng/g) < AMA (2.193 ng/g). Though each of the three methods has a suitable ability in determining accurately the concentrations of mercury in fish and sediment, for the determination of very low concentrations of mercury ICP-MS should be preferred considering the order of the detection limit which follows the trend ICP-MS (0.016 ng/g) < DMA (0.158 ng/g) < AMA (0.509 ng/g).


Asunto(s)
Espectrometría de Masas/métodos , Mercurio/análisis , Animales , Peces , Ghana , Lagos/química , Límite de Detección
9.
Springerplus ; 5: 319, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27065161

RESUMEN

In this study, sixty-two (62) skin-lightening creams and soaps were analysed for total mercury and hydroquinone levels. Total mercury was determined by the Cold Vapour Atomic Absorption Spectrophotometry using an automatic mercury analyser and hydroquinone by High Performance Liquid Chromatography. The mean concentration of total mercury in skin toning creams and cosmetic soaps were 0.098 ± 0.082 and 0.152 ± 0.126 µg/g, respectively. The mean concentration of hydroquinone was 0.243 ± 0.385 and 0.035 ± 0.021 % in skin toning creams and cosmetic soaps, respectively. All the creams and soaps analysed had mercury and hydroquinone levels below the US Food and Drug Administration's acceptable limit of 1 µg/g and 2 %, respectively. The low levels of mercury and hydroquinone in the creams and soaps analysed in this study therefore do not pose any potential risk to consumers who are mostly women in Ghana.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...