Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2400704, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712580

RESUMEN

Deformable alternating-current electroluminescent (ACEL) devices are of increasing interest because of their potential to drive innovation in soft optoelectronics. Despite the research focus on efficient white ACEL devices, achieving deformable devices with high luminance remains difficult. In this study, this challenge is addressed by fabricating white ACEL devices using color-conversion materials, transparent and durable hydrogel electrodes, and high-k nanoparticles. The incorporation of quantum dots enables the highly efficient generation of red and green light through the color conversion of blue electroluminescence. Although the ionic-hydrogel electrode provides high toughness, excellent light transmittance, and superior conductivity, the luminance of the device is remarkably enhanced by the incorporation of a high-k dielectric, BaTiO3. The fabricated ACEL device uniformly emits very bright white light (489 cd m-2) with a high color-rendering index (91) from both the top and bottom. The soft and tough characteristics of the device allow seamless operation in various deformed states, including bending, twisting, and stretching up to 400%, providing a promising platform for applications in a wide array of soft optoelectronics.

2.
ACS Appl Mater Interfaces ; 16(19): 25071-25079, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38691640

RESUMEN

We propose a novel design of thermoelectric (TE) effect-based soft temperature sensors for directly monitoring localized subtle temperature stimuli. This design integrates rheology-engineered three-dimensional (3D) printing of high-performance carbon-based TE materials and polymer-based viscoelastic materials with low thermal conductivity. Rheological engineering of carbon nanotube (CNT) TE inks ensures the 3D printing of highly sensitive TE sensing units on directly written 3D soft platforms. Additionally, we pre-dope CNT inks with p- and n-type organic dopants to achieve high sensitivity and a fast response to temperature changes. The introduced 3D soft platforms with low thermal conductivity lead to an efficient thermal gradient on TE sensing units in the out-of-plane direction. Furthermore, encapsulating the temperature sensor array with the same polymer-based materials as the 3D soft platforms facilitates independent detection of localized temperature stimuli by minimizing thermal interaction between sensing units, resulting in precise temperature mapping by localized detection. Our 3D-printed soft temperature sensors exhibit high sensitivity to relatively small temperature changes, with a minimum sensing resolution of 0.1 K within tens of milliseconds. Moreover, the temperature sensor array not only detects localized temperature stimuli by imaging the temperature distribution but also demonstrates remarkable mechanical reliability against repetitive deformation with high accuracy.

3.
Nano Lett ; 24(19): 5855-5861, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38690800

RESUMEN

Quantum dots (QDs) have garnered a significant amount of attention as promising memristive materials owing to their size-dependent tunable bandgap, structural stability, and high level of applicability for neuromorphic computing. Despite these advantageous properties, the development of QD-based memristors has been hindered by challenges in understanding and adjusting the resistive switching (RS) behavior of QDs. Herein, we propose three types of InP/ZnSe/ZnS QD-based memristors to elucidate the RS mechanism, employing a thin poly(methyl methacrylate) layer. This approach not only allows us to identify which carriers (electron or hole) are trapped within the QD layer but also successfully demonstrates QD-based synaptic devices. Furthermore, to utilize the QD memristor as a synapse, long-term potentiation/depression (LTP/LTD) characteristics are measured, resulting in a low nonlinearity of LTP/LTD at 0.1/1. On the basis of the LTP/LTD characteristics, single-layer perceptron simulations were performed using the Extended Modified National Institute of Standards and Technology, verifying a maximum recognition rate of 91.46%.

4.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542268

RESUMEN

Recently, artificial exosomes have been developed to overcome the challenges of natural exosomes, such as production scalability and stability. In the production of artificial exosomes, the incorporation of membrane proteins into lipid nanostructures is emerging as a notable approach for enhancing biocompatibility and treatment efficacy. This study focuses on incorporating HEK293T cell-derived membrane proteins into liposomes to create membrane-protein-bound liposomes (MPLCs), with the goal of improving their effectiveness as anticancer therapeutics. MPLCs were generated by combining two key elements: lipid components that are identical to those in conventional liposomes (CLs) and membrane protein components uniquely derived from HEK293T cells. An extensive comparison of CLs and MPLCs was conducted across multiple in vitro and in vivo cancer models, employing advanced techniques such as cryo-TEM (tramsmission electron microscopy) imaging and FT-IR (fourier transform infrared spectroscopy). MPLCs displayed superior membrane fusion capabilities in cancer cell lines, with significantly higher cellular uptake. Additionally, MPLCs maintained their morphology and size better than CLs when exposed to FBS (fetal bovine serum), suggesting enhanced serum stability. In a xenograft mouse model using HeLa and ASPC cancer cells, intravenous administration of MPLCs MPLCs accumulated more in tumor tissues, highlighting their potential for targeted cancer therapy. Overall, these results indicate that MPLCs have superior tumor-targeting properties, possibly attributable to their membrane protein composition, offering promising prospects for enhancing drug delivery efficiency in cancer treatments. This research could offer new clinical application opportunities, as it uses MPLCs with membrane proteins from HEK293T cells, which are known for their efficient production and compatibility with GMP (good manufacturing practice) standards.


Asunto(s)
Liposomas , Nanoestructuras , Humanos , Ratones , Animales , Liposomas/química , Células HEK293 , Espectroscopía Infrarroja por Transformada de Fourier , Proteínas de la Membrana , Lípidos/química
5.
Adv Sci (Weinh) ; 11(10): e2308368, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38236169

RESUMEN

Thermoelectric (TE) generation with solution-processable conducting polymers offers substantial potential in low-temperature energy harvesting based on high tunability in materials, processes, and form-factors. However, manipulating the TE and charge transport properties accompanies structural and energetic disorders, restricting the enhancement of thermoelectric power factor (PF). Here, solution-based strong acid-base treatment techniques are introduced to modulate the doping level of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) thin films with preserving its molecular orientation, enabling to achieve a remarkably high PF of 534.5 µW m-1  K-2 . Interestingly, theoretical modeling suggested that further de-doping can increase the PF beyond the experimental value. However, it is impossible to reach this value experimentally, even without any degradation of PEDOT crystallinity. Uncovering the underlying reason for the limitation, an analysis of the relationship among the microstructure-thermoelectric performance-charge transport property revealed that inter-domain connectivity via tie-chains and the resultant percolation for transport are crucial factors in achieving high TE performance, as in charge transport. It is believed that the methods and fundamental understandings in this work would contribute to the exploitation of conducting polymer-based low-temperature energy harvesting.

6.
Small Methods ; 8(2): e2300266, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37183298

RESUMEN

The superior optical properties of colloidal quantum dots (QDs) have garnered significant broad interest from academia and industry owing to their successful application in self-emitting QD-based light-emitting diodes (QLEDs). In particular, active research is being conducted on QLEDs with top-emission device architectures (TQLEDs) owing to their advantages such as easy integration with conventional backplanes, high color purity, and excellent light extraction. However, due to the complicated optical phenomena and their highly sensitive optoelectrical properties to experimental variations, TQLEDs cannot be optimized easily for practical use. This review summarizes previous studies that have investigated top-emitting device structures and discusses ways to advance the performance of TQLEDs. First, theories relevant to the optoelectrical properties of TQLEDs are introduced. Second, advancements in device optimization are presented, where the underlying theories for each are considered. Finally, multilateral strategies for TQLEDs to enable their wider application to advanced industries are discussed. This work believes that this review can provide valuable insights for realizing commercial TQLEDs applicable to a broad range of applications.

7.
Small ; 20(2): e2304592, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37688336

RESUMEN

An approach for synthesizing AgInZnS/CdS/ZnS core-shell-shell quantum dots (QDs) that demonstrate exceptional stability and electroluminescence (EL) performance is introduced. This approach involves incorporating a cadmium sulfide (CdS) interlayer between an AgInZnS (AIZS) core and a zinc sulfide (ZnS) shell to prevent the diffusion of Zn ions into the AIZS core and the cation exchange at the core-shell interface. Consequently, a uniform and thick ZnS shell, with a thickness of 2.9 nm, is formed, which significantly enhances the stability and increases the photoluminescence quantum yield (87.5%) of the QDs. The potential for AIZS/CdS/ZnS QDs in electroluminescent devices is evaluated, and an external quantum efficiency of 9.6% in the 645 nm is achieved. These findings highlight the importance of uniform and thick ZnS shells in improving the stability and EL performance of QDs.

8.
Adv Mater ; 35(48): e2304717, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37516451

RESUMEN

Active matrix (AM) quantum-dot light-emitting diodes (QLEDs) driven by thin-film transistors (TFTs) have attracted significant attention for use in next-generation displays. Several challenges remain for the realisation of AM-QLEDs, such as device design, fabrication process, and integration between QLEDs and TFTs, depending on their device structures and configurations. Herein, efficient and stable AM-QLEDs are demonstrated using conventional and inverted structured QLEDs (C- and I-QLEDs, respectively) combined with facile type-convertible (p- and n-type) single-walled carbon nanotube (SWNT)-based TFTs. Based on the four possible configurations of the QLED-TFT subpixel, the performance of the SWNT TFT-driven QLEDs and the fabrication process to determine the ideal configuration are compared, taking advantage of each structure for AM-QLEDs. The QLEDs and TFTs are also optimized to maximise the performance of the AM-QLEDs-the inner shell composition of quantum dots and carrier type of TFTs-resulting in a maximum external quantum efficiency and operational lifetime (at an initial luminance of 100 cd m2 ) of 21.2% and 38 100 000 h for the C-QLED, and 19.1% and 133100000 h for the I-QLED, respectively. Finally, a 5×5 AM-QLED display array controlled using SWNT TFTs is successfully demonstrated. This study is expected to contribute to the development of advanced AM-QLED displays.

9.
Small ; 19(29): e2207003, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37017491

RESUMEN

The Fabry-Perot (FP) resonator is an intuitive and versatile optical structure owing to its uniqueness in light-matter interactions, yielding resonance with a wide range of wavelengths as it couples with photonic materials encapsulated in a dielectric cavity. Leveraging the FP resonator for molecular detection, a simple geometry of the metal-dielectric-metal structure is demonstrated to allow tuning of the enhancement factors (EFs) of surface-enhanced Raman scattering (SERS). The optimum near-field EF from randomly dispersed gold nano-gaps and dynamic modulation of the far-field SERS EF by varying the optical resonance of the FP etalon are systematically investigated by performing computational and experimental analyses. The proposed strategy of combining plasmonic nanostructures with FP etalons clearly reveals wavelength matching of FP resonance to excitation and scattering wavelengths plays a key role in determining the magnitude of the SERS EF. Finally, the optimum near-field generating optical structure with controlled dielectric cavity is suggested for a tunable SERS platform, and its dynamic SERS switching performance is confirmed by demonstrating information encryption through liquid immersion.

10.
Nanoscale ; 15(17): 7980-7990, 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37067237

RESUMEN

In this study, a temperature-insensitive strain sensor that detects only the strain without responding to the temperature was designed. The transport mechanism and associated temperature coefficient of resistance (TCR) of a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) thin film were modified through secondary doping with dimethyl sulfoxide (DMSO). Upon DMSO-doping, the carrier transport mechanism of the PEDOT:PSS thin film transitioned from hopping to band-like transport, with a morphological change. At the DMSO doping level, which caused the critical point of the transport transition, the resistance of the thin film was maintained with a change in temperature. Consequently, the TCR of the optimized PEDOT:PSS thin film was less than 9 × 10-5 K-1, which is 102 times lower than that of the as-prepared films. The carrier mobility of the PEDOT:PSS thin film was effectively improved with the morphological change due to DMSO doping and was investigated through combinational analysis. Ultimately, the wearable strain sensor prepared using the optimized PEDOT:PSS thin film responded stably to the applied strain with a gauge factor of 2 and exhibited excellent temperature anti-interference.

11.
Small ; 19(20): e2206133, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36793160

RESUMEN

The quantum dot light-emitting diode (QLED) represents one of the strongest display technologies and has unique advantages like a shallow emission spectrum and superior performance based on the cumulative studies of state-of-the-art quantum dot (QD) synthesis and interfacial engineering. However, research on managing the device's light extraction has been lacking compared to the conventional LED field. Moreover, relevant studies on top-emitting QLEDs (TE-QLEDs) have been severely lacking compared to bottom-emitting QLEDs (BE-QLEDs). This paper demonstrates a novel light extraction structure called the randomly disassembled nanostructure (RaDiNa). The RaDiNa is formed by detaching polydimethylsiloxane (PDMS) film from a ZnO nanorod (ZnO NR) layer and laying it on top of the TE-QLED. The RaDiNa-attached TE-QLED shows significantly widened angular-dependent electroluminescence (EL) intensities over the pristine TE-QLED, confirming the effective light extraction capability of the RaDiNa layer. Consequently, the optimized RaDiNa-attached TE-QLED achieves enhanced external quantum efficiency (EQE) over the reference device by 60%. For systematic analyses, current-voltage-luminance (J-V-L) characteristics are investigated using scanning electron microscopy (SEM) and optical simulation based on COMSOL Multiphysics. It is believed that this study's results provide essential information for the commercialization of TE-QLEDs.

12.
ACS Appl Mater Interfaces ; 15(2): 2852-2860, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36608257

RESUMEN

Conjugated polymer-based energy-harvesting devices hold distinctive advantages in terms of low toxicity, high flexibility, and capability of large-area integration at low cost for sustainable development. An organic thermoelectric (OTE) device has been considered one of the promising energy-harvesting candidates in recent years because it can efficiently convert low-temperature waste heat into electricity over its inorganic counterparts. However, a cruel irony is that environmentally toxic solvents and acids are utilized for fabrication and performance improvement of the OTE devices, retarding the development and use of genuinely green energy-harvesting. Here, we present eco-friendly, non-toxic strategies for a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-based high-performance OTE device by incorporating a nature-abundant material, vitamin C (VC), as an additive. We found that the intrinsic polar nature and reducing ability of VC induce synergy effects of microstructure alignment with PSS removal and dedoping of PEDOT, leading to simultaneous enhancement of the electrical conductivity (>400 S cm-1) and the Seebeck coefficient (>30 µV K-1) and a resultant high thermoelectric power factor of 51.8 µW m-1 K-2. In addition, inspired by the eco-friendly fabrication process, we further demonstrated a transient OTE device, which can be fully degraded with naturally occurring substances, by fabricating it on a bio-based cellulose acetate substrate. We believe that our eco-friendly strategies from fabrication to disposal of the OTE can be applied to the development of high-performance, wearable, and bio-compatible OTE devices with minimal waste and further trigger the research on genuinely green thermal energy harvesting.

13.
Mater Horiz ; 10(1): 160-170, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36321545

RESUMEN

We propose inkjet-printed high-speed and transparent temperature sensors based on the thermoelectric effect for direct monitoring of the photothermal effect. They consist of highly transparent organic thermoelectric materials that allow excellent biocompatibility and sub-ms temporal resolution, simultaneously. Our transparent thermoelectric temperature sensors can be used to advance various photothermal biomedical applications.


Asunto(s)
Calor , Temperatura
14.
Materials (Basel) ; 15(23)2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36499950

RESUMEN

In typical color-by-blue mode-based quantum dot (QD) display devices, only part of the blue excitation light is absorbed by QD emitters, thus it is accompanied by the leakage of blue light through the devices. To address this issue, we offer, for the first time, the applicability of AuAg alloy nanoparticles (NPs) as effective blue light absorbers in InP QD-based color-by-blue platforms. For this, high-quality fluorescent green and red InP QDs with a double shell scheme of ZnSe/ZnS were synthesized and embedded in a transparent polymer film. Separately, a series of Au/Ag ratio-varied AuAg NPs with tunable plasmonic absorption peaks were synthesized. Among them, AuAg NPs possessing the most appropriate absorption peak with respect to spectral overlap with blue emission are chosen for the subsequent preparation of AuAg NP polymeric films with varied NP concentrations. A stack of AuAg NP polymeric film on top of InP QD film is then placed remotely on a blue light-emitting diode, successfully resulting in systematically progressive suppression of blue light leakage with increasing AuAg NP concentration. Furthermore, the beneficial function of the AuAg NP polymeric overlayer in mitigating undesirable QD excitation upon exposure to ambient lights was further examined.

15.
Materials (Basel) ; 15(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36500003

RESUMEN

This paper aims to discuss the key accomplishments and further prospects of active-matrix (AM) quantum-dot (QD) light-emitting diodes (QLEDs) display. We present an overview and state-of-the-art of QLEDs as a frontplane and non-Si-based thin-film transistors (TFTs) as a backplane to meet the requirements for the next-generation displays, such as flexibility, transparency, low power consumption, fast response, high efficiency, and operational reliability. After a brief introduction, we first review the research on non-Si-based TFTs using metal oxides, transition metal dichalcogenides, and semiconducting carbon nanotubes as the driving unit of display devices. Next, QLED technologies are analyzed in terms of the device structure, device engineering, and QD patterning technique to realize high-performance, full-color AM-QLEDs. Lastly, recent research on the monolithic integration of TFT-QLED is examined, which proposes a new perspective on the integrated device. We anticipate that this review will help the readership understand the fundamentals, current state, and issues on TFTs and QLEDs for future AM-QLED displays.

16.
Opt Express ; 30(17): 31367-31380, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36242220

RESUMEN

The stability of methylammonium (MA)-based perovskite solar cells (PSCs) remains one of the most urgent issues that need to be addressed. Inherent weak binding forces between MAs and halides cause the perovskite structure to become unstable under exposure to various external environmental factors such as moisture, oxygen, ultraviolet radiation, and heat. In particular, the degradation of perovskite films under light exposure accelerates the deterioration of the device, mainly due to the migration of halide ions. In this study, we investigated the effect of light energy on the degradation of inverted PSCs by introducing red ( = 610-800 nm), green (500-590 nm), and blue (300-500 nm) light-pass filters. After 30 h, the inverted PSCs of blue-light-induced devices retained a power conversion efficiency (PCE) of 70%, while those of the green and red light-induced devices retained PCEs of 85% and 90%, respectively. Direct evidence of light-induced degradation was obtained by investigating morphological changes in the perovskite films and the amount of ion accumulation on the Ag electrode. This evidence highlights the varying effect of light with different energies on device degradation. Furthermore, to minimize light-induced device degradation, we designed two types of blue cut-off filters that can selectively block light ranging from = 400 to 500 nm, comprising a multilayered inorganic metasurface. An optical simulation was used to optimize the performance of the designed filters. By investigating the changes in the photovoltaic parameters and the amount of ion accumulation on the Ag electrode, we confirmed that integrating blue cut-off filters into PSCs greatly improved the operational lifetime of the devices.

17.
Small ; 18(29): e2202290, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35754301

RESUMEN

Wide interest in quantum dot (QD) light-emitting diodes (QLEDs) for potential application to display devices and light sources has led to their rapid advancement in device performance. Despite such progress, detailed operation mechanisms of QLEDs, which are necessary for the fundamental understanding and further improvements, have been still uncertain because of the intricate interaction between charges and excitons in electrical operation. In this work, the transient electroluminescence (TREL) signals of dichromatic QLEDs which are purposely designed to consist of two different color-emitting QD layers are analyzed. As a result, not only can the charge injection and exciton recombination processes be visualized but the electron mobility of the QD layer can also be estimated. Furthermore, the effects of Förster resonant energy transfer between two QDs and exciton quenching near the QD layer are quantitatively measured in QLED operation. The authors believe that their results based on TREL analyses will contribute to the understanding and development of high-performance QLEDs.

18.
RSC Adv ; 12(7): 4322-4328, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35425415

RESUMEN

Aluminum hydroxide nanoparticles, one of the essential luminescent materials for display technology, bio-imaging, and sensors due to their non-toxicity, affordable pricing, and rare-earth-free phosphors, are synthesized via a simple method at a reaction time of 10 min at a low temperature of 200 °C. By controlling the precursor's ratio of aluminum acetylacetonate to oleic acid, UV or blue light-emitting aluminum hydroxides with oxygen defects and carbonyl radicals can be synthesized. As a result, aluminum hydroxide (Al(OH)3-x ) nanoparticles overwhelmingly emit UVA light (390 nm) because of the oxygen defects in nanoparticles, and carbon-related radicals on the nanoparticles are responsible for the blue-light emission at 465 nm. Electrically driven light-emitting devices are applied using luminescent aluminum hydroxide as an emissive layer, that consists of a cost-efficient inverted bottom-emission structure as [ITO (cathode)/ZnO/emissive layers/2,2'-bis(4-(carbazol-9-yl)phenyl)-biphenyl (BCBP)/MoO3/Al (anode)]. The device with aluminum hydroxide as an emissive layer shows a maximum luminance of 215.48 cd m-2 and external quantum efficiency (EQE) of 0.12%. The new method for synthesizing UV-blue emitting aluminum hydroxides and their application to LEDs will contribute to developing the field of non-toxic optoelectronic material or UV-blue emitting devices.

19.
Adv Mater ; 34(4): e2106276, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34706113

RESUMEN

Quantum dot light-emitting diodes (QLEDs) are one of the most promising candidates for next-generation displays and lighting sources, but they are barely used because vulnerability to electrical and thermal stresses precludes high brightness, efficiency, and stability at high current density (J) regimes. Here, bright and stable QLEDs on a Si substrate are demonstrated, expanding their potential application boundary over the present art. First, a tailored interface is granted to the quantum dots, maximizing the quantum yield and mitigating nonradiative Auger decay of the multiexcitons generated at high-J regimes. Second, a heat-endurable, top-emission device architecture is employed and optimized based on optical simulation to enhance the light outcoupling efficiency. The multilateral approaches realize that the red top-emitting QLEDs exhibit a maximum luminance of 3 300 000 cd m-2 , a current efficiency of 75.6 cd A-1 , and an operational lifetime of 125 000 000 h at an initial brightness of 100 cd m-2 , which are the highest of the values reported so far.

20.
Adv Mater ; 33(44): e2104690, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34510591

RESUMEN

Conventional stretchable electronics that adopt a wavy design, a neutral mechanical plane, and conformal contact between abiotic and biotic interfaces have exhibited diverse skin-interfaced applications. Despite such remarkable progress, the evolution of intelligent skin prosthetics is challenged by the absence of the monolithic integration of neuromorphic constituents into individual sensing and actuating components. Herein, a bioinspired stretchable sensory-neuromorphic system, comprising an artificial mechanoreceptor, artificial synapse, and epidermal photonic actuator is demonstrated; these three biomimetic functionalities correspond to a stretchable capacitive pressure sensor, a resistive random-access memory, and a quantum dot light-emitting diode, respectively. This system features a rigid-island structure interconnected with a sinter-free printable conductor, which is optimized by controlling the evaporation rate of solvent (≈160% stretchability and ≈18 550 S cm-1 conductivity). Devised design improves both areal density and structural reliability while avoiding the thermal degradation of heat-sensitive stretchable electronic components. Moreover, even in the skin deformation range, the system accurately recognizes various patterned stimuli via an artificial neural network with training/inferencing functions. Therefore, the new bioinspired system is expected to be an important step toward implementing intelligent wearable electronics.


Asunto(s)
Dispositivos Electrónicos Vestibles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...